Visible to the public Biblio

Filters: Keyword is content publishers  [Clear All Filters]
2020-07-24
Wu, Zhijun, Xu, Enzhong, Liu, Liang, Yue, Meng.  2019.  CHTDS: A CP-ABE Access Control Scheme Based on Hash Table and Data Segmentation in NDN. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :843—848.

For future Internet, information-centric networking (ICN) is considered a potential solution to many of its current problems, such as content distribution, mobility, and security. Named Data Networking (NDN) is a more popular ICN project. However, concern regarding the protection of user data persists. Information caching in NDN decouples content and content publishers, which leads to content security threats due to lack of secure controls. Therefore, this paper presents a CP-ABE (ciphertext policy attribute based encryption) access control scheme based on hash table and data segmentation (CHTDS). Based on data segmentation, CHTDS uses a method of linearly splitting fixed data blocks, which effectively improves data management. CHTDS also introduces CP-ABE mechanism and hash table data structure to ensure secure access control and privilege revocation does not need to re-encrypt the published content. The analysis results show that CHTDS can effectively realize the security and fine-grained access control in the NDN environment, and reduce communication overhead for content access.

2020-05-22
Almashaqbeh, Ghada, Kelley, Kevin, Bishop, Allison, Cappos, Justin.  2019.  CAPnet: A Defense Against Cache Accounting Attacks on Content Distribution Networks. 2019 IEEE Conference on Communications and Network Security (CNS). :250—258.

Peer-assisted content distribution networks (CDNs)have emerged to improve performance and reduce deployment costs of traditional, infrastructure-based content delivery networks. This is done by employing peer-to-peer data transfers to supplement the resources of the network infrastructure. However, these hybrid systems are vulnerable to accounting attacks in which the peers, or caches, collude with clients in order to report that content was transferred when it was not. This is a particular issue in systems that incentivize cache participation, because malicious caches may collect rewards from the content publishers operating the CDN without doing any useful work. In this paper, we introduce CAPnet, the first technique that lets untrusted caches join a peer-assisted CDN while providing a bound on the effectiveness of accounting attacks. At its heart is a lightweight cache accountability puzzle that clients must solve before caches are given credit. This puzzle requires colocating the data a client has requested, so its solution confirms that the content has actually been retrieved. We analyze the security and overhead of our scheme in realistic scenarios. The results show that a modest client machine using a single core can solve puzzles at a rate sufficient to simultaneously watch dozens of 1080p videos. The technique is designed to be even more scalable on the server side. In our experiments, one core of a single low-end machine is able to generate puzzles for 4.26 Tbps of bandwidth - enabling 870,000 clients to concurrently view the same 1080p video. This demonstrates that our scheme can ensure cache accountability without degrading system productivity.