Biblio
Filters: Keyword is Time Series Data [Clear All Filters]
Revisiting Compressive Sensing based Encryption Schemes for IoT. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
.
2020. Compressive sensing (CS) is regarded as one of the promising solutions for IoT data encryption as it achieves simultaneous sampling, compression, and encryption. Theoretical work in the literature has proved that CS provides computational secrecy. It also provides asymptotic perfect secrecy for Gaussian sensing matrix with constraints on input signal. In this paper, we design an attack decoding algorithm based on block compressed sensing decoding algorithm to perform ciphertext-only attack on real-life time series IoT data. It shows that it is possible to retrieve vital information in the plaintext under some conditions. Furthermore, it is also applied to a State-of-the Art CS-based encryption scheme for smart grid, and the power profile is reconstructed using ciphertext-only attack. Additionally, the statistical analysis of Gaussian and Binomial measurements is conducted to investigate the randomness provided by them.
Nearest Neighbor Subsequence Search in Time Series Data. 2019 IEEE International Conference on Big Data (Big Data). :2057—2066.
.
2019. Continuous growth in sensor data and other temporal sequence data necessitates efficient retrieval and similarity search support on these big time series datasets. However, finding exact similarity results, especially at the granularity of subsequences, is known to be prohibitively costly for large data sets. In this paper, we thus propose an efficient framework for solving this exact subsequence similarity match problem, called TINN (TIme series Nearest Neighbor search). Exploiting the range interval diversity properties of time series datasets, TINN captures similarity at two levels of abstraction, namely, relationships among subsequences within each long time series and relationships across distinct time series in the data set. These relationships are compactly organized in an augmented relationship graph model, with the former relationships encoded in similarity vectors at TINN nodes and the later captured by augmented edge types in the TINN Graph. Query processing strategy deploy novel pruning techniques on the TINN Graph, including node skipping, vertical and horizontal pruning, to significantly reduce the number of time series as well as subsequences to be explored. Comprehensive experiments on synthetic and real world time series data demonstrate that our TINN model consistently outperforms state-of-the-art approaches while still guaranteeing to retrieve exact matches.