Visible to the public Biblio

Filters: Keyword is binary code representation  [Clear All Filters]
2021-02-08
Nisperos, Z. A., Gerardo, B., Hernandez, A..  2020.  Key Generation for Zero Steganography Using DNA Sequences. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
Some of the key challenges in steganography are imperceptibility and resistance to detection of steganalysis algorithms. Zero steganography is an approach to data hiding such that the cover image is not modified. This paper focuses on the generation of stego-key, which is an essential component of this steganographic approach. This approach utilizes DNA sequences and shifting and flipping operations in its binary code representation. Experimental results show that the key generation algorithm has a low cracking probability. The algorithm satisfies the avalanche criterion.
2020-05-22
Markchit, Sarawut, Chiu, Chih-Yi.  2019.  Hash Code Indexing in Cross-Modal Retrieval. 2019 International Conference on Content-Based Multimedia Indexing (CBMI). :1—4.

Cross-modal hashing, which searches nearest neighbors across different modalities in the Hamming space, has become a popular technique to overcome the storage and computation barrier in multimedia retrieval recently. Although dozens of cross-modal hashing algorithms are proposed to yield compact binary code representation, applying exhaustive search in a large-scale dataset is impractical for the real-time purpose, and the Hamming distance computation suffers inaccurate results. In this paper, we propose a novel index scheme over binary hash codes in cross-modal retrieval. The proposed indexing scheme exploits a few binary bits of the hash code as the index code. Based on the index code representation, we construct an inverted index structure to accelerate the retrieval efficiency and train a neural network to improve the indexing accuracy. Experiments are performed on two benchmark datasets for retrieval across image and text modalities, where hash codes are generated by three cross-modal hashing methods. Results show the proposed method effectively boosts the performance over the benchmark datasets and hash methods.