Visible to the public Biblio

Filters: Keyword is video games  [Clear All Filters]
2020-02-10
Carneiro, Lucas R., Delgado, Carla A.D.M., da Silva, João C.P..  2019.  Social Analysis of Game Agents: How Trust and Reputation can Improve Player Experience. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). :485–490.
Video games normally use Artificial Intelligence techniques to improve Non-Player Character (NPC) behavior, creating a more realistic experience for their players. However, rational behavior in general does not consider social interactions between player and bots. Because of that, a new framework for NPCs was proposed, which uses a social bias to mix the default strategy of finding the best possible plays to win with a analysis to decide if other players should be categorized as allies or foes. Trust and reputation models were used together to implement this demeanor. In this paper we discuss an implementation of this framework inside the game Settlers of Catan. New NPC agents are created to this implementation. We also analyze the results obtained from simulations among agents and players to conclude how the use of trust and reputation in NPCs can create a better gaming experience.
2015-05-04
Alsaleh, M.N., Al-Shaer, E.A..  2014.  Security configuration analytics using video games. Communications and Network Security (CNS), 2014 IEEE Conference on. :256-264.

Computing systems today have a large number of security configuration settings that enforce security properties. However, vulnerabilities and incorrect configuration increase the potential for attacks. Provable verification and simulation tools have been introduced to eliminate configuration conflicts and weaknesses, which can increase system robustness against attacks. Most of these tools require special knowledge in formal methods and precise specification for requirements in special languages, in addition to their excessive need for computing resources. Video games have been utilized by researchers to make educational software more attractive and engaging. Publishing these games for crowdsourcing can also stimulate competition between players and increase the game educational value. In this paper we introduce a game interface, called NetMaze, that represents the network configuration verification problem as a video game and allows for attack analysis. We aim to make the security analysis and hardening usable and accurately achievable, using the power of video games and the wisdom of crowdsourcing. Players can easily discover weaknesses in network configuration and investigate new attack scenarios. In addition, the gameplay scenarios can also be used to analyze and learn attack attribution considering human factors. In this paper, we present a provable mapping from the network configuration to 3D game objects.