Visible to the public Biblio

Filters: Keyword is DBDH assumption  [Clear All Filters]
2020-07-24
Zhang, Leyou, Liang, Pengfei, Mu, Yi.  2018.  Improving Privacy-Preserving and Security for Decentralized Key-Policy Attributed-Based Encryption. IEEE Access. 6:12736—12745.
Decentralized attribute-based encryption (ABE) is an efficient and flexible multi-authority attribute-based encryption system, since it does not requires the central authority and does not need to cooperate among the authorities for creating public parameters. Unfortunately, recent works show that the reality of the privacy preserving and security in almost well-known decentralized key policy ABE (KP-ABE) schemes are doubtful. How to construct a decentralized KP-ABE with the privacy-preserving and user collusion avoidance is still a challenging problem. Most recently, Y. Rahulamathavam et al. proposed a decentralized KP ABE scheme to try avoiding user collusion and preserving the user's privacy. However, we exploit the vulnerability of their scheme in this paper at first and present a collusion attack on their decentralized KP-ABE scheme. The attack shows the user collusion cannot be avoided. Subsequently, a new privacy-preserving decentralized KP-ABE is proposed. The proposed scheme avoids the linear attacks at present and achieves the user collusion avoidance. We also show that the security of the proposed scheme is reduced to decisional bilinear Diffie-Hellman assumption. Finally, numerical experiments demonstrate the efficiency and validity of the proposed scheme.
2020-05-29
Tseng, Yi-Fan, Fan, Chun-I, Wu, Chin-Yu.  2019.  FGAC-NDN: Fine-Grained Access Control for Named Data Networks. IEEE Transactions on Network and Service Management. 16:143—152.

Named data network (NDN) is one of the most promising information-centric networking architectures, where the core concept is to focus on the named data (or contents) themselves. Users in NDN can easily send a request packet to get the desired content regardless of its address. The routers in NDN have cache functionality to make the users instantly retrieve the desired file. Thus, the user can immediately get the desired file from the nearby nodes instead of the remote host. Nevertheless, NDN is a novel proposal and there are still some open issues to be resolved. In view of previous research, it is a challenge to achieve access control on a specific user and support potential receivers simultaneously. In order to solve it, we present a fine-grained access control mechanism tailored for NDN, supporting data confidentiality, potential receivers, and mobility. Compared to previous works, this is the first to support fine-grained access control and potential receivers. Furthermore, the proposed scheme achieves provable security under the DBDH assumption.