Visible to the public Biblio

Filters: Keyword is Medical Big Data  [Clear All Filters]
2022-05-06
Nayak, Lipsa, Jayalakshmi, V..  2021.  A Study of Securing Healthcare Big Data using DNA Encoding based ECC. 2021 6th International Conference on Inventive Computation Technologies (ICICT). :348—352.
IT world is migrating towards utilizing cloud computing as an essential data storing and exchanging platform. With the amelioration of technology, a colossal amount of data is generating with time. Cloud computing provides an enormous data storage capacity with the flexibility of accessing it without the time and place restrictions with virtualized resources. Healthcare industries spawn intense amounts of data from various medical instruments and digital records of patients. To access data remotely from any geographical location, the healthcare industry is moving towards cloud computing. EHR and PHR are patient's digital records, which include sensitive information of patients. Apart from all the proficient service provided by cloud computing, security is a primary concern for various organizations. To address the security issue, several cryptographic techniques implemented by researchers worldwide. In this paper, a vigorous cryptographic method discussed which is implemented by combining DNA cryptography and Elliptic Curve Cryptography to protect sensitive data in the cloud.
2020-09-21
Xin, Yang, Qian, Zhenwei, Jiang, Rong, Song, Yang.  2019.  Trust Evaluation Strategy Based on Grey System Theory for Medical Big Data. 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI). :157–160.
The performance of the trust evaluation strategy depends on the accuracy and rationality of the trust evaluation weight system. Trust is a difficult to accurate measurement and quantitative cognition in the heart, the trust of the traditional evaluation method has a strong subjectivity and fuzziness and uncertainty. This paper uses the AHP method to determine the trust evaluation index weight, and combined with grey system theory to build trust gray evaluation model. The use of gray assessment based on the whitening weight function in the evaluation process reduces the impact of the problem that the evaluation result of the trust evaluation is not easy to accurately quantify when the decision fuzzy and the operating mechanism are uncertain.
2020-08-24
Jeon, Joohyung, Kim, Junhui, Kim, Joongheon, Kim, Kwangsoo, Mohaisen, Aziz, Kim, Jong-Kook.  2019.  Privacy-Preserving Deep Learning Computation for Geo-Distributed Medical Big-Data Platforms. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :3–4.
This paper proposes a distributed deep learning framework for privacy-preserving medical data training. In order to avoid patients' data leakage in medical platforms, the hidden layers in the deep learning framework are separated and where the first layer is kept in platform and others layers are kept in a centralized server. Whereas keeping the original patients' data in local platforms maintain their privacy, utilizing the server for subsequent layers improves learning performance by using all data from each platform during training.
2020-06-01
Bhargavi, US., Gundibail, Shivaprasad, Manjunath, KN., Renuka, A..  2019.  Security of Medical Big Data Images using Decoy Technique. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :310–314.

Tele-radiology is a technology that helps in bringing the communication between the radiologist, patients and healthcare units situated at distant places. This involves exchange of medical centric data. The medical data may be stored as Electronic Health Records (EHR). These EHRs contain X-Rays, CT scans, MRI reports. Hundreds of scans across multiple radiology centers lead to medical big data (MBD). Healthcare Cloud can be used to handle MBD. Since lack of security to EHRs can cause havoc in medical IT, healthcare cloud must be secure. It should ensure secure sharing and storage of EHRs. This paper proposes the application of decoy technique to provide security to EHRs. The EHRs have the risk of internal attacks and external intrusion. This work addresses and handles internal attacks. It also involves study on honey-pots and intrusion detection techniques. Further it identifies the possibility of an intrusion and alerts the administrator. Also the details of intrusions are logged.