Visible to the public Biblio

Filters: Keyword is intruder detection system  [Clear All Filters]
2021-07-08
Chaturvedi, Amit Kumar, Kumar, Punit, Sharma, Kalpana.  2020.  Proposing Innovative Intruder Detection System for Host Machines in Cloud Computing. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :292—296.
There is very significant role of Virtualization in cloud computing. The physical hardware in the cloud computing reside with the host machine and the virtualization software runs on it. The virtualization allows virtual machines to exist. The host machine shares its physical components such as memory, storage, and processor ultimately to handle the needs of the virtual machines. If an attacker effectively compromises one VM, it could outbreak others on the same host on the network over long periods of time. This is an gradually more popular method for cross-virtual-machine attacks, since traffic between VMs cannot be examined by standard IDS/IPS software programs. As we know that the cloud environment is distributed in nature and hence more susceptible to various types of intrusion attacks which include installing malicious software and generating backdoors. In a cloud environment, where organizations have hosted important and critical data, the security of underlying technologies becomes critical. To alleviate the hazard to cloud environments, Intrusion Detection Systems (IDS) are a cover of defense. In this paper, we are proposing an innovative model for Intrusion Detection System for securing Host machines in cloud infrastructure. This proposed IDS has two important features: (1) signature based and (2) prompt alert system.
2020-06-01
Xenya, Michael Christopher, Kwayie, Crentsil, Quist-Aphesti, Kester.  2019.  Intruder Detection with Alert Using Cloud Based Convolutional Neural Network and Raspberry Pi. 2019 International Conference on Computing, Computational Modelling and Applications (ICCMA). :46–464.
In this paper, an intruder detection system has been built with an implementation of convolutional neural network (CNN) using raspberry pi, Microsoft's Azure and Twilio cloud systems. The CNN algorithm which is stored in the cloud is implemented to basically classify input data as either intruder or user. By using the raspberry pi as the middleware and raspberry pi camera for image acquisition, efficient execution of the learning and classification operations are performed using higher resources that cloud computing offers. The cloud system is also programmed to alert designated users via multimedia messaging services (MMS) when intruders or users are detected. Furthermore, our work has demonstrated that, though convolutional neural network could impose high computing demands on a processor, the input data could be obtained with low-cost modules and middleware which are of low processing power while subjecting the actual learning algorithm execution to the cloud system.