Visible to the public Biblio

Filters: Keyword is automatic control system crossing  [Clear All Filters]
2020-06-01
Xiao, Litian, Xiao, Nan, Li, Mengyuan, Liu, Zhanqing, Wang, Fei, Li, Yuliang, Hou, Kewen.  2019.  Intelligent Architecture and Hybrid Model of Ground and Launch System for Advanced Launch Site. 2019 IEEE Aerospace Conference. :1–12.
This paper proposes an intelligent functional architecture for an advanced launch site system that is composed of five parts: the intelligent technical area, the intelligent launching region, the intelligent flight and landing area, the intelligent command and control system, and the intelligent analysis assessment system. The five parts consist of the infrastructure, facilities, equipment, hardware and software and thus include the whole mission processes of ground and launch systems from flight articles' entry to launch. The architectural framework is designed for the intelligent elements of the parts. The framework is also defined as the interrelationship and the interface of the elements, including the launch vehicle and flight payloads. Based on the Internet of Things (IoT), the framework is integrated on four levels: the physical layer, the perception layer, the network layer, and the application layer. The physical layer includes the physical objects and actuators of the launch site. The perception layer consists of the sensors and data processing system. The network layer supplies the access gateways and backbone network. The application layer serves application systems through the middleware platform. The core of the intelligent system is the controller of the automatic control system crossing the four layers. This study builds the models of the IoT, cloud platform, middleware, integrated access gateway, and automatic control system for actual ground and launch systems. A formal approach describes and defines the architecture, models and autonomous control flows in the paper. The defined models describe the physical objects, intelligent elements, interface relations, status transformation functions, etc. The test operation and launch processes are connected with the intelligent system model. This study has been applied to an individual mission project and achieved good results. The architecture and the models of this study regulate the relationship between the elements of the intelligent system. The study lays a foundation for the architectural construction, the simulation and the verification of the intelligent systems at the launch site.