Biblio
With the help of technological advancements in the last decade, it has become much easier to extensively and remotely observe medical conditions of the patients through wearable biosensors that act as connected nodes on Body Area Networks (BANs). Sensitive nature of the critical data captured and communicated via wireless medium makes it extremely important to process it as securely as possible. In this regard, lightweight security mechanisms are needed to overcome the hardware resource restrictions of biosensors. Random and secure cryptographic key generation and agreement among the biosensors take place at the core of these security mechanisms. In this paper, we propose the SKA-PSAR (Augmented Randomness for Secure Key Agreement using Physiological Signals) system to produce highly random cryptographic keys for the biosensors to secure communication in BANs. Similar to its predecessor SKA-PS protocol by Karaoglan Altop et al., SKA-PSAR also employs physiological signals, such as heart rate and blood pressure, as inputs for the keys and utilizes the set reconciliation mechanism as basic building block. Novel quantization and binarization methods of the proposed SKA-PSAR system distinguish it from SKA-PS by increasing the randomness of the generated keys. Additionally, SKA-PSAR generated cryptographic keys have distinctive and time variant characteristics as well as long enough bit sizes that provides resistance against cryptographic attacks. Moreover, correct key generation rate is above 98% with respect to most of the system parameters, and false key generation rate of 0% have been obtained for all system parameters.
This paper investigates the problem of generating two secret keys (SKs) simultaneously over a five-terminal system with terminals labelled as 1, 2, 3, 4 and 5. Each of terminal 2 and terminal 3 wishes to generate an SK with terminal 1 over a public channel wiretapped by a passive eavesdropper. Terminal 4 and terminal 5 respectively act as a trusted helper and an untrusted helper to assist the SK generation. All the terminals observe correlated source sequences from discrete memoryless sources (DMS) and can exchange information over a public channel with no rate constraint that the eavesdropper has access to. Based on the considered model, key capacity region is fully characterized and a source coding scheme that can achieve the capacity region is provided. Furthermore, expression for key leakage rate is obtained to analyze the security performance of the two generated keys.