Biblio
We formulate a tracker which performs incessant decision making in order to track objects where the objects may undergo different challenges such as partial occlusions, moving camera, cluttered background etc. In the process, the agent must make a decision on whether to keep track of the object when it is occluded or has moved out of the frame temporarily based on its prediction from the previous location or to reinitialize the tracker based on the belief that the target has been lost. Instead of the heuristic methods we depend on reward and penalty based training that helps the agent reach an optimal solution via this partially observable Markov decision making (POMDP). Furthermore, we employ deeply learned compositional model to estimate human pose in order to better handle occlusion without needing human inputs. By learning compositionality of human bodies via deep neural network the agent can make better decision on presence of human in a frame or lack thereof under occlusion. We adapt skeleton based part representation and do away with the large spatial state requirement. This especially helps in cases where orientation of the target in focus is unorthodox. Finally we demonstrate that the deep reinforcement learning based training coupled with pose estimation capabilities allows us to train and tag multiple large video datasets much quicker than previous works.
The technology of vehicle video detecting and tracking has been playing an important role in the ITS (Intelligent Transportation Systems) field during recent years. The occlusion phenomenon among vehicles is one of the most difficult problems related to vehicle tracking. In order to handle occlusion, this paper proposes an effective solution that applied Markov Random Field (MRF) to the traffic images. The contour of the vehicle is firstly detected by using background subtraction, then numbers of blocks with vehicle's texture and motion information are filled inside each vehicle. We extract several kinds of information of each block to process the following tracking. As for each occlusive block two groups of clique functions in MRF model are defined, which represents spatial correlation and motion coherence respectively. By calculating each occlusive block's total energy function, we finally solve the attribution problem of occlusive blocks. The experimental results show that our method can handle occlusion problems effectively and track each vehicle continuously.