Visible to the public Biblio

Filters: Keyword is RGB image encryption  [Clear All Filters]
2020-06-08
Wade, Mamadou I., Chouikha, Mohamed, Gill, Tepper, Patterson, Wayne, Washington, Talitha M., Zeng, Jianchao.  2019.  Distributed Image Encryption Based On a Homomorphic Cryptographic Approach. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0686–0696.
The objective of this research is to develop a novel image encryption method that can be used to considerably increase the security of encrypted images. To solve this image security problem, we propose a distributed homomorphic image encryption scheme where the images of interest are those in the visible electromagnetic spectrum. In our encryption phase, a red green blue (RGB) image is first separated into its constituent channel images, and then the numerical intensity value of a pixel from each channel is written as a sum of smaller pixel intensity sub-values, leading to having several component images for each of the R, G, and B-channel images. A homomorphic encryption function is used to separately encrypted each of the pixel intensity sub-values in each component image using an encryption key, leading to a distributed image encryption approach. Each of the encrypted component images can be compressed before transmission and/or storage. In our decryption phase, each encrypted component image is decompressed if necessary, and then the homomorphic property of the encryption function is used to transform the product of individually encrypted pixel intensity sub-values in each encrypted component images, to the encryption of their sum, before applying the corresponding decryption function with a decryption key to recover the original pixel's intensity values for each channel image, and then recovering the original RGB image. Furthermore, a special case of an RGB image encryption and decryption where a pixel's intensity value from each channel is written as a sum of only two sub-values is implemented and simulated with a software. The resulting cipher-images are subject to a range of security tests and analyses. Results from these tests shown that our proposed homomorphic image encryption scheme is robust and can resist security attacks, as well as increases the security of the associated encrypted images. Our proposed homomorphic image encryption scheme has produced highly secure encrypted images.