Visible to the public Biblio

Filters: Keyword is fitness value hashing  [Clear All Filters]
2020-06-12
Chiba, Zouhair, Abghour, Noreddine, Moussaid, Khalid, Omri, Amina El, Rida, Mohamed.  2018.  A Hybrid Optimization Framework Based on Genetic Algorithm and Simulated Annealing Algorithm to Enhance Performance of Anomaly Network Intrusion Detection System Based on BP Neural Network. 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). :1—6.

Today, network security is a world hot topic in computer security and defense. Intrusions and attacks in network infrastructures lead mostly in huge financial losses, massive sensitive data leaks, thus decreasing efficiency, competitiveness and the quality of productivity of an organization. Network Intrusion Detection System (NIDS) is valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threat confidentiality, integrity and availability of network resources and services. Thus, the presence of NIDS in an organization plays a vital part in attack mitigation, and it has become an integral part of a secure organization. In this paper, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel hybrid Framework (GASAA) based on improved Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). GA is improved through an optimization strategy, namely Fitness Value Hashing (FVH), which reduce execution time, convergence time and save processing power. Experimental results on KDD CUP' 99 dataset show that our optimized ANIDS (Anomaly NIDS) based BPNN, called “ANIDS BPNN-GASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. In addition, improvement of GA through FVH has saved processing power and execution time. Thereby, our proposed IDS is very much suitable for network anomaly detection.