Visible to the public Biblio

Filters: Keyword is semisupervised learning method  [Clear All Filters]
2020-06-12
Min, Congwen, Li, Yi, Fang, Li, Chen, Ping.  2019.  Conditional Generative Adversarial Network on Semi-supervised Learning Task. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1448—1452.

Semi-supervised learning has recently gained increasingly attention because it can combine abundant unlabeled data with carefully labeled data to train deep neural networks. However, common semi-supervised methods deeply rely on the quality of pseudo labels. In this paper, we proposed a new semi-supervised learning method based on Generative Adversarial Network (GAN), by using discriminator to learn the feature of both labeled and unlabeled data, instead of generating pseudo labels that cannot all be correct. Our approach, semi-supervised conditional GAN (SCGAN), builds upon the conditional GAN model, extending it to semi-supervised learning by changing the discriminator's output to a classification output and a real or false output. We evaluate our approach with basic semi-supervised model on MNIST dataset. It shows that our approach achieves the classification accuracy with 84.15%, outperforming the basic semi-supervised model with 72.94%, when labeled data are 1/600 of all data.