Visible to the public Biblio

Filters: Keyword is Cohttps://ieeexplore.ieee.org/document/8402794mplexity theory  [Clear All Filters]
2020-06-12
Domniţa, Dan, Oprişa, Ciprian.  2018.  A genetic algorithm for obtaining memory constrained near-perfect hashing. 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). :1—6.

The problem of fast items retrieval from a fixed collection is often encountered in most computer science areas, from operating system components to databases and user interfaces. We present an approach based on hash tables that focuses on both minimizing the number of comparisons performed during the search and minimizing the total collection size. The standard open-addressing double-hashing approach is improved with a non-linear transformation that can be parametrized in order to ensure a uniform distribution of the data in the hash table. The optimal parameter is determined using a genetic algorithm. The paper results show that near-perfect hashing is faster than binary search, yet uses less memory than perfect hashing, being a good choice for memory-constrained applications where search time is also critical.