Biblio
For over two decades the OpenPGP format has provided the mainstay of email confidentiality and authenticity, and is currently being relied upon to provide authenticated package distributions in open source Unix systems. In this work, we provide the first language theoretical analysis of the OpenPGP format, classifying it as a deterministic context free language and establishing that an automatically generated parser can in principle be defined. However, we show that the number of rules required to describe it with a deterministic context free grammar is prohibitively high, and we identify security vulnerabilities in the OpenPGP format specification. We identify possible attacks aimed at tampering with messages and certificates while retaining their syntactical and semantical validity. We evaluate the effectiveness of these attacks against the two OpenPGP implementations covering the overwhelming majority of uses, i.e., the GNU Privacy Guard (GPG) and Symantec PGP. The results of the evaluation show that both implementations turn out not to be vulnerable due to conser- vative choices in dealing with malicious input data. Finally, we provide guidelines to improve the OpenPGP specification
ICT systems have become an integral part of business and life. At the same time, these systems have become extremely complex. In such systems exist numerous vulnerabilities waiting to be exploited by potential threat actors. pwnPr3d is a novel modelling approach that performs automated architectural analysis with the objective of measuring the cyber security of the modeled architecture. Its integrated modelling language allows users to model software and hardware components with great level of details. To illustrate this capability, we present in this paper the metamodel of UNIX, operating systems being the core of every software and every IT system. After describing the main UNIX constituents and how they have been modelled, we illustrate how the modelled OS integrates within pwnPr3d's rationale by modelling the spreading of a self-replicating malware inspired by WannaCry.
As any veteran of the editor wars can attest, Unix users can be fiercely and irrationally attached to the commands they use and the manner in which they use them. In this work, we investigate the problem of identifying users out of a large set of candidates (25-97) through their command-line histories. Using standard algorithms and feature sets inspired by natural language authorship attribution literature, we demonstrate conclusively that individual users can be identified with a high degree of accuracy through their command-line behavior. Further, we report on the best performing feature combinations, from the many thousands that are possible, both in terms of accuracy and generality. We validate our work by experimenting on three user corpora comprising data gathered over three decades at three distinct locations. These are the Greenberg user profile corpus (168 users), Schonlau masquerading corpus (50 users) and Cal Poly command history corpus (97 users). The first two are well known corpora published in 1991 and 2001 respectively. The last is developed by the authors in a year-long study in 2014 and represents the most recent corpus of its kind. For a 50 user configuration, we find feature sets that can successfully identify users with over 90% accuracy on the Cal Poly, Greenberg and one variant of the Schonlau corpus, and over 87% on the other Schonlau variant.