Biblio
Filters: Keyword is DNA encryption [Clear All Filters]
Data Security Enhancement in Cloud Computing Using Multimodel Biometric System. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :175—179.
.
2019. Today, data is all around us, every device that has computation power is generating the data and we can assume that in today's world there is about 2 quintillion bytes of data is been generating every day. as data increase in the database of the world servers so as the risk of data leak where we are talking about unlimited confidential data that is available online but as humans are developing their data online so as its security, today we've got hundreds of way to secure out data but not all are very successful or compatible there the big question arises that how to secure our data to hide our all the confidential information online, in other words one's all life work can be found online which is on risk of leak. all that says is today we have cloud above all of our data centers that stores all the information so that one can access anything from anywhere. in this paper we are introducing a new multimodal biometric system that is possible for the future smartphones to be supported where one can upload, download or modify the files using cloud without worrying about the unauthorized access of any third person as this security authentication uses combination of multiple security system available today that are not easy to breach such as DNA encryption which mostly is based on AES cipher here in this paper there we have designed triple layer of security.
5D Combined Chaotic System for Image Encryption with DNA Encoding and Scrambling. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–6.
.
2019. The objective of this paper was to propose a 5D combined chaotic system used for image encryption by scrambling and DNA encryption. The initial chaotic values were calculated with a set of equations. The chaotic sequences were used for pixel scrambling, bit scrambling, DNA encryption and DNA complementary function. The average of NPCR, UACI and entropy values of the 6 images used for testing were 99.61, 33.51 and 7.997 respectively. The correlation values obtained for the encrypted image were much lower than the corresponding original image. The histogram of the encrypted image was flat. Based on the theoretical results from the tests performed on the proposed system it can be concluded that the system is suited for practical applications, since it offers high security.
A Dual Layer Image Encryption using Polymerase Chain Reaction Amplification and DNA Encryption. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–4.
.
2019. Unauthorized access of the data is one of the major threat for the real world digital data communication. Digital images are one of the most vital subset of the digital data. Several important and sensitive information is conveyed through digital images. Hence, digital image security is one of the foremost interest of the researchers. Cryptographic algorithms Biological sequences are often used to encrypt data due to their inherent features. DNA encryption is one of the widely used method used for data security which is based on the properties of the biological sequences. To protect the images from unwanted accesses, a new two stage method is proposed in this work. DNA Encryption and Polymerase Chain Reaction (PCR) Amplification is used to enhance the security. The proposed method is evaluated using different standard parameters that shows the efficiency of the algorithm.