Visible to the public Biblio

Filters: Keyword is DNA coding  [Clear All Filters]
2023-07-12
Sreeja, C.S., Misbahuddin, Mohammed.  2022.  Anticounterfeiting Method for Drugs Using Synthetic DNA Cryptography. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.
Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
2022-05-06
Akumalla, Harichandana, Hegde, Ganapathi.  2021.  Deoxyribonucleic Acid Based Nonce-Misuse-Resistant Authenticated Encryption Algorithm. 2021 5th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1—5.
This paper aims to present a performance comparison of new authenticated encryption (AE) algorithm with the objective of high network security and better efficiency as compared to the defacto standard. This algorithm is based on a critical property of nonce-misuse-resistance incorporating DNA computation for securing the key, here the processing unit of DNA block converts the input key into its equivalent DNA base formats based on the ASCII code table. The need for secure exchange of keys through a public channel has become inevitable and thus, the proposed architecture will enhance the secrecy by using DNA cryptography. These implementations consider Advanced Encryption Standard in Galois Counter mode (AES-GCM) as a standard for comparison.
Zhang, Mengmeng, Wu, Wangchun.  2021.  Research on Image Encryption Technology Based on Hyperchaotic System and DNA Encoding. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :140—144.
This paper proposes an image encryption technology based on six-dimensional hyperchaotic system and DNA encoding, in order to solve the problem of low security in existing image encryption algorithms. First of all, the pixel values of the R, G, and B channels are divided into blocks and zero-filled. Secondly, the chaotic sequence generated by the six-dimensional hyperchaotic system and logistic mapping is used for DNA coding and DNA operations. Third, the decoded three-channel pixel values are scrambled through diagonal traversal. Finally, merge the channels to generate a ciphertext image. According to simulation experiments and related performance analysis, the algorithm has high security performance, good encryption and decryption effects, and can effectively resist various common attack methods.
2022-01-10
Saeed, Sameera Abubaker, Mohamed, Marghny Hassan, Farouk Mohamed, Mamdouh.  2021.  Secure Storage of Data on Devices-Android Based. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :427–432.
Security in today's world is one of the most important considerations when one wants to send, receive and store files containing private information or files simply too large for an email attachment. People are becoming more and more dependent on their mobile phones for performing the mentioned critical functionalities. Therefore, it is very important to protect sensitive information when the mobile is lost or stolen. There are many algorithms and methods used to accomplish data security in mobile devices. In general, cryptography and steganography are two common methods used to secure communications. Recently, the field of biology has been combined with the field of cryptography to produce a new field called deoxyribonucleic acid (DNA) cryptography which is one of the most powerful tools to solve security problems.This paper proposes a DNA cryptography technique for securing data stored offline in the Android device where users are not aware of the confidentiality of their private data. It is very difficult to predict the one-time pad key that is used as randomly generated and just for one-time. The proposed algorithm uses DNA mapping for dealing with the data as a DNA sequence. Two approaches have been proposed for achieving desired outcomes.
2021-02-08
Saleh, A. H., Yousif, A. S., Ahmed, F. Y. H..  2020.  Information Hiding for Text Files by Adopting the Genetic Algorithm and DNA Coding. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :220–223.
Hiding information is a process to hide data or include it in different digital media such as image, audio, video, and text. However, there are many techniques to achieve the process of hiding information in the image processing, in this paper, a new method has been proposed for hidden data mechanism (which is a text file), then a transposition cipher method has been employed for encryption completed. It can be used to build an encrypted text and also to increase security against possible attacks while sending it over the World Wide Web. A genetic algorithm has been affected in the adjustment of the encoded text and DNA in the creation of an encrypted text that is difficult to detect and then include in the image and that affected the image visual quality. The proposed method outperforms the state of arts in terms of efficiently retrieving the embedded messages. Performance evaluation has been recorded high visual quality scores for the (SNR (single to noise ratio), PSNR (peak single to noise ratio) and MSE (mean square error).
2020-06-22
Ravichandran, Dhivya, Fathima, Sherin, Balasubramanian, Vidhyadharini, Banu, Aashiq, Anushiadevi, Amirtharajan, Rengarajan.  2019.  DNA and Chaos Based Confusion-Diffusion for Color Image Security. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–6.
Nowadays, secure transmission of multimedia files has become more significant concern with the evolution of technologies. Cryptography is the well-known technique to safeguard the files from various destructive hacks. In this work, a colour image encryption scheme is suggested using chaos and Deoxyribo Nucleic Acid (DNA) coding. The encryption scheme is carried out in two stages namely confusion and diffusion. As the first stage, chaos aided inter-planar row and column shuffling are performed to shuffle the image pixels completely. DNA coding and decoding operations then diffuse the resultant confused image with the help of eight DNA XOR rules. This confusion-diffusion process has achieved the entropy value equal to 7.9973 and correlation coefficient nearer to zero with key space of 10140. Various other analyses are also done to ensure the effectiveness of the developed algorithm. The results show that the proposed scheme can withstand different attacks and better than the recent state-of-art methods.