Visible to the public Biblio

Filters: Keyword is MPC  [Clear All Filters]
2022-09-16
Wu, Yiming, Lu, GeHao, Jin, Na, Fu, LiYu, Zhuan Zhao, Jing.  2021.  Trusted Fog Computing for Privacy Smart Contract Blockchain. 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP). :1042—1047.
The fog platform is very suitable for time and location sensitive applications. Compared with cloud computing, fog computing faces new security and privacy challenges. This paper integrates blockchain nodes with fog nodes, and uses multi-party secure computing (MPC) in smart contracts to realize privacy-protected fog computing. MPC technology realizes encrypted input and output, so that participants can only get the output value of their own function. It is impossible to know the input and output of other people, and privacy calculation is realized. At the same time, the blockchain can perform network-wide verification and consensus on the results calculated by the MPC under the chain. Ensure the reliability of the calculation results. Due to the integration of blockchain and fog nodes, access control and encryption are guaranteed, integrity and isolation are provided, and privacy-sensitive data is controlled. As more complex topological structures emerge, the entire chain of fog nodes must be trusted. This ensures the network security of distributed data storage and network topology, users and fog service providers. Finally, trusted fog computing with privacy protection is realized.
2020-08-13
Wang, Liang, Asharov, Gilad, Pass, Rafael, Ristenpart, Thomas, shelat, abhi.  2019.  Blind Certificate Authorities. 2019 IEEE Symposium on Security and Privacy (SP). :1015—1032.
We explore how to build a blind certificate authority (CA). Unlike conventional CAs, which learn the exact identity of those registering a public key, a blind CA can simultaneously validate an identity and provide a certificate binding a public key to it, without ever learning the identity. Blind CAs would therefore allow bootstrapping truly anonymous systems in which no party ever learns who participates. In this work we focus on constructing blind CAs that can bind an email address to a public key. To do so, we first introduce secure channel injection (SCI) protocols. These allow one party (in our setting, the blind CA) to insert a private message into another party's encrypted communications. We construct an efficient SCI protocol for communications delivered over TLS, and use it to realize anonymous proofs of account ownership for SMTP servers. Combined with a zero-knowledge certificate signing protocol, we build the first blind CA that allows Alice to obtain a X.509 certificate binding her email address alice@domain.com to a public key of her choosing without ever revealing “alice” to the CA. We show experimentally that our system works with standard email server implementations as well as Gmail.
2020-06-26
Rezaei, Aref, Farzinvash, Leili, Farzamnia, Ali.  2019.  A Novel Steganography Algorithm using Edge Detection and MPC Algorithm. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :49—54.

With the rapid development of the Internet, preserving the security of confidential data has become a challenging issue. An effective method to this end is to apply steganography techniques. In this paper, we propose an efficient steganography algorithm which applies edge detection and MPC algorithm for data concealment in digital images. The proposed edge detection scheme partitions the given image, namely cover image, into blocks. Next, it identifies the edge blocks based on the variance of their corner pixels. Embedding the confidential data in sharp edges causes less distortion in comparison to the smooth areas. To diminish the imposed distortion by data embedding in edge blocks, we employ LSB and MPC algorithms. In the proposed scheme, the blocks are split into some groups firstly. Next, a full tree is constructed per group using the LSBs of its pixels. This tree is converted into another full tree in some rounds. The resultant tree is used to modify the considered LSBs. After the accomplishment of the data embedding process, the final image, which is called stego image, is derived. According to the experimental results, the proposed algorithm improves PSNR with at least 5.4 compared to the previous schemes.