Visible to the public Biblio

Filters: Keyword is Ensemble Machine Learning  [Clear All Filters]
2023-01-13
Yang, Jun-Zheng, Liu, Feng, Zhao, Yuan-Jie, Liang, Lu-Lu, Qi, Jia-Yin.  2022.  NiNSRAPM: An Ensemble Learning Based Non-intrusive Network Security Risk Assessment Prediction Model. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :17–23.
Cybersecurity insurance is one of the important means of cybersecurity risk management and the development of cyber insurance is inseparable from the support of cyber risk assessment technology. Cyber risk assessment can not only help governments and organizations to better protect themselves from related risks, but also serve as a basis for cybersecurity insurance underwriting, pricing, and formulating policy content. Aiming at the problem that cybersecurity insurance companies cannot conduct cybersecurity risk assessments on policyholders before the policy is signed without the authorization of the policyholder or in legal, combining with the need that cybersecurity insurance companies want to obtain network security vulnerability risk profiles of policyholders conveniently, quickly and at low cost before the policy signing, this study proposed a non-intrusive network security vulnerability risk assessment method based on ensemble machine learning. Our model uses only open source intelligence and publicly available network information data to rate cyber vulnerability risk of an organization, achieving an accuracy of 70.6% compared to a rating based on comprehensive information by cybersecurity experts.
2020-06-29
Das, Saikat, Mahfouz, Ahmed M., Venugopal, Deepak, Shiva, Sajjan.  2019.  DDoS Intrusion Detection Through Machine Learning Ensemble. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :471–477.
Distributed Denial of Service (DDoS) attacks have been the prominent attacks over the last decade. A Network Intrusion Detection System (NIDS) should seamlessly configure to fight against these attackers' new approaches and patterns of DDoS attack. In this paper, we propose a NIDS which can detect existing as well as new types of DDoS attacks. The key feature of our NIDS is that it combines different classifiers using ensemble models, with the idea that each classifier can target specific aspects/types of intrusions, and in doing so provides a more robust defense mechanism against new intrusions. Further, we perform a detailed analysis of DDoS attacks, and based on this domain-knowledge verify the reduced feature set [27, 28] to significantly improve accuracy. We experiment with and analyze NSL-KDD dataset with reduced feature set and our proposed NIDS can detect 99.1% of DDoS attacks successfully. We compare our results with other existing approaches. Our NIDS approach has the learning capability to keep up with new and emerging DDoS attack patterns.