Visible to the public Biblio

Filters: Keyword is activity detection  [Clear All Filters]
2023-02-03
Rout, Sonali, Mohapatra, Ramesh Kumar.  2022.  Hiding Sensitive Information in Surveillance Video without Affecting Nefarious Activity Detection. 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP). :1–6.
Protection of private and sensitive information is the most alarming issue for security providers in surveillance videos. So to provide privacy as well as to enhance secrecy in surveillance video without affecting its efficiency in detection of violent activities is a challenging task. Here a steganography based algorithm has been proposed which hides private information inside the surveillance video without affecting its accuracy in criminal activity detection. Preprocessing of the surveillance video has been performed using Tunable Q-factor Wavelet Transform (TQWT), secret data has been hidden using Discrete Wavelet Transform (DWT) and after adding payload to the surveillance video, detection of criminal activities has been conducted with maintaining same accuracy as original surveillance video. UCF-crime dataset has been used to validate the proposed framework. Feature extraction is performed and after feature selection it has been trained to Temporal Convolutional Network (TCN) for detection. Performance measure has been compared to the state-of-the-art methods which shows that application of steganography does not affect the detection rate while preserving the perceptual quality of the surveillance video.
ISSN: 2640-5768
2021-07-07
Elbasi, Ersin.  2020.  Reliable abnormal event detection from IoT surveillance systems. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–5.
Surveillance systems are widely used in airports, streets, banks, military areas, borders, hospitals, and schools. There are two types of surveillance systems which are real-time systems and offline surveillance systems. Usually, security people track videos on time in monitoring rooms to find out abnormal human activities. Real-time human tracking from videos is very expensive especially in airports, borders, and streets due to the huge number of surveillance cameras. There are a lot of research works have been done for automated surveillance systems. In this paper, we presented a new surveillance system to recognize human activities from several cameras using machine learning algorithms. Sequences of images are collected from cameras using the internet of things technology from indoor or outdoor areas. A feature vector is created for each recognized moving object, then machine learning algorithms are applied to extract moving object activities. The proposed abnormal event detection system gives very promising results which are more than 96% accuracy in Multilayer Perceptron, Iterative Classifier Optimizer, and Random Forest algorithms.
2020-07-03
Bashir, Muzammil, Rundensteiner, Elke A., Ahsan, Ramoza.  2019.  A deep learning approach to trespassing detection using video surveillance data. 2019 IEEE International Conference on Big Data (Big Data). :3535—3544.
Railroad trespassing is a dangerous activity with significant security and safety risks. However, regular patrolling of potential trespassing sites is infeasible due to exceedingly high resource demands and personnel costs. This raises the need to design automated trespass detection and early warning prediction techniques leveraging state-of-the-art machine learning. To meet this need, we propose a novel framework for Automated Railroad Trespassing detection System using video surveillance data called ARTS. As the core of our solution, we adopt a CNN-based deep learning architecture capable of video processing. However, these deep learning-based methods, while effective, are known to be computationally expensive and time consuming, especially when applied to a large volume of surveillance data. Leveraging the sparsity of railroad trespassing activity, ARTS corresponds to a dual-stage deep learning architecture composed of an inexpensive pre-filtering stage for activity detection, followed by a high fidelity trespass classification stage employing deep neural network. The resulting dual-stage ARTS architecture represents a flexible solution capable of trading-off accuracy with computational time. We demonstrate the efficacy of our approach on public domain surveillance data achieving 0.87 f1 score while keeping up with the enormous video volume, achieving a practical time and accuracy trade-off.