Biblio
The recent proliferation of the Internet of Things (IoT) technology poses major security and privacy concerns. Specifically, the use of personal IoT devices, such as tablets, smartphones, and even smartwatches, as part of the Bring Your Own Device (BYOD) trend, may result in severe network security breaches in enterprise environments. Such devices increase the attack surface by weakening the digital perimeter of the enterprise network and opening new points of entry for malicious activities. In this paper we demonstrate a novel attack scenario in an enterprise environment by exploiting the smartwatch device of an innocent employee. Using a malicious application running on a suitable smartwatch, the device imitates a real Wi-Fi direct printer service in the network. Using this attack scenario, we illustrate how an advanced attacker located outside of the organization can leak/steal sensitive information from the organization by utilizing the compromised smartwatch as a means of attack. An attack mitigation process and countermeasures are suggested in order to limit the capability of the remote attacker to execute the attack on the network, thus minimizing the data leakage by the smartwatch.
We introduce Active Dependency Mapping (ADM), a method for establishing dependency relations among a set of interdependent services. The approach is to artificially degrade network performance to infer which assets on the network support a particular process. Artificial degradation of the network environment could be transparent to users; run continuously it could identify dependencies that are rare or occur only at certain timescales. A useful byproduct of this dependency analysis is a quantitative assessment of the resilience and robustness of the system. This technique is intriguing for hardening both enterprise networks and cyber physical systems. We present a proof-of-concept experiment executed on a real-world set of interrelated software services. We assess the efficacy of the approach, discuss current limitations, and suggest options for future development of ADM.
Cyber scanning refers to the task of probing enterprise networks or Internet wide services, searching for vulnerabilities or ways to infiltrate IT assets. This misdemeanor is often the primarily methodology that is adopted by attackers prior to launching a targeted cyber attack. Hence, it is of paramount importance to research and adopt methods for the detection and attribution of cyber scanning. Nevertheless, with the surge of complex offered services from one side and the proliferation of hackers' refined, advanced, and sophisticated techniques from the other side, the task of containing cyber scanning poses serious issues and challenges. Furthermore recently, there has been a flourishing of a cyber phenomenon dubbed as cyber scanning campaigns - scanning techniques that are highly distributed, possess composite stealth capabilities and high coordination - rendering almost all current detection techniques unfeasible. This paper presents a comprehensive survey of the entire cyber scanning topic. It categorizes cyber scanning by elaborating on its nature, strategies and approaches. It also provides the reader with a classification and an exhaustive review of its techniques. Moreover, it offers a taxonomy of the current literature by focusing on distributed cyber scanning detection methods. To tackle cyber scanning campaigns, this paper uniquely reports on the analysis of two recent cyber scanning incidents. Finally, several concluding remarks are discussed.