Visible to the public Biblio

Filters: Keyword is attack propagation  [Clear All Filters]
2021-03-17
Sadu, A., Stevic, M., Wirtz, N., Monti, A..  2020.  A Stochastic Assessment of Attacks based on Continuous-Time Markov Chains. 2020 6th IEEE International Energy Conference (ENERGYCon). :11—16.

With the increasing interdependence of critical infrastructures, the probability of a specific infrastructure to experience a complex cyber-physical attack is increasing. Thus it is important to analyze the risk of an attack and the dynamics of its propagation in order to design and deploy appropriate countermeasures. The attack trees, commonly adopted to this aim, have inherent shortcomings in representing interdependent, concurrent and sequential attacks. To overcome this, the work presented here proposes a stochastic methodology using Petri Nets and Continuous Time Markov Chain (CTMC) to analyze the attacks, considering the individual attack occurrence probabilities and their stochastic propagation times. A procedure to convert a basic attack tree into an equivalent CTMC is presented. The proposed method is applied in a case study to calculate the different attack propagation characteristics. The characteristics are namely, the probability of reaching the root node & sub attack nodes, the mean time to reach the root node and the mean time spent in the sub attack nodes before reaching the root node. Additionally, the method quantifies the effectiveness of specific defenses in reducing the attack risk considering the efficiency of individual defenses.

2020-09-08
Chen, Yu-Cheng, Mooney, Vincent, Grijalva, Santiago.  2019.  A Survey of Attack Models for Cyber-Physical Security Assessment in Electricity Grid. 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC). :242–243.
This paper surveys some prior work regarding attack models in a cyber-physical system and discusses the potential benefits. For comparison, the full paper will model a bad data injection attack scenario in power grid using the surveyed prior work.
Chen, Yu-Cheng, Gieseking, Tim, Campbell, Dustin, Mooney, Vincent, Grijalva, Santiago.  2019.  A Hybrid Attack Model for Cyber-Physical Security Assessment in Electricity Grid. 2019 IEEE Texas Power and Energy Conference (TPEC). :1–6.
A detailed model of an attack on the power grid involves both a preparation stage as well as an execution stage of the attack. This paper introduces a novel Hybrid Attack Model (HAM) that combines Probabilistic Learning Attacker, Dynamic Defender (PLADD) model and a Markov Chain model to simulate the planning and execution stages of a bad data injection attack in power grid. We discuss the advantages and limitations of the prior work models and of our proposed Hybrid Attack Model and show that HAM is more effective compared to individual PLADD or Markov Chain models.
2020-07-03
Lisova, Elena, El Hachem, Jamal, Causevic, Aida.  2019.  Investigating Attack Propagation in a SoS via a Service Decomposition. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:9—14.

A term systems of systems (SoS) refers to a setup in which a number of independent systems collaborate to create a value that each of them is unable to achieve independently. Complexity of a SoS structure is higher compared to its constitute systems that brings challenges in analyzing its critical properties such as security. An SoS can be seen as a set of connected systems or services that needs to be adequately protected. Communication between such systems or services can be considered as a service itself, and it is the paramount for establishment of a SoS as it enables connections, dependencies, and a cooperation. Given that reliable and predictable communication contributes directly to a correct functioning of an SoS, communication as a service is one of the main assets to consider. Protecting it from malicious adversaries should be one of the highest priorities within SoS design and operation. This study aims to investigate the attack propagation problem in terms of service-guarantees through the decomposition into sub-services enriched with preconditions and postconditions at the service levels. Such analysis is required as a prerequisite for an efficient SoS risk assessment at the design stage of the SoS development life cycle to protect it from possibly high impact attacks capable of affecting safety of systems and humans using the system.