Visible to the public Biblio

Found 6023 results

Filters: Keyword is Scalability  [Clear All Filters]
2017-09-05
Basan, Alexander, Basan, Elena, Makarevich, Oleg.  2016.  Development of the Hierarchal Trust Management System for Mobile Cluster-based Wireless Sensor Network. Proceedings of the 9th International Conference on Security of Information and Networks. :116–122.

In this paper a model of secure wireless sensor network (WSN) was developed. This model is able to defend against most of known network attacks and don't significantly reduce the energy power of sensor nodes (SN). We propose clustering as a way of network organization, which allows reducing energy consumption. Network protection is based on the trust level calculation and the establishment of trusted relationships between trusted nodes. The primary purpose of the hierarchical trust management system (HTMS) is to protect the WSN from malicious actions of an attacker. The developed system should combine the properties of energy efficiency and reliability. To achieve this goal the following tasks are performed: detection of illegal actions of an intruder; blocking of malicious nodes; avoiding of malicious attacks; determining the authenticity of nodes; the establishment of trusted connections between authentic nodes; detection of defective nodes and the blocking of their work. The HTMS operation based on the use of Bayes' theorem and calculation of direct and centralized trust values.

Haider, Ihtesham, Höberl, Michael, Rinner, Bernhard.  2016.  Trusted Sensors for Participatory Sensing and IoT Applications Based on Physically Unclonable Functions. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :14–21.

With the emergence of the internet of things (IoT) and participatory sensing (PS) paradigms trustworthiness of remotely sensed data has become a vital research question. In this work, we present the design of a trusted sensor, which uses physically unclonable functions (PUFs) as anchor to ensure integrity, authenticity and non-repudiation guarantees on the sensed data. We propose trusted sensors for mobile devices to address the problem of potential manipulation of mobile sensors' readings by exploiting vulnerabilities of mobile device OS in participatory sensing for IoT applications. Preliminary results from our implementation of trusted visual sensor node show that the proposed security solution can be realized without consuming significant amount of resources of the sensor node.

Markwood, Ian D., Liu, Yao.  2016.  Vehicle Self-Surveillance: Sensor-Enabled Automatic Driver Recognition. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :425–436.

Motor vehicles are widely used, quite valuable, and often targeted for theft. Preventive measures include car alarms, proximity control, and physical locks, which can be bypassed if the car is left unlocked, or if the thief obtains the keys. Reactive strategies like cameras, motion detectors, human patrolling, and GPS tracking can monitor a vehicle, but may not detect car thefts in a timely manner. We propose a fast automatic driver recognition system that identifies unauthorized drivers while overcoming the drawbacks of previous approaches. We factor drivers' trips into elemental driving events, from which we extract their driving preference features that cannot be exactly reproduced by a thief driving away in the stolen car. We performed real world evaluation using the driving data collected from 31 volunteers. Experiment results show we can distinguish the current driver as the owner with 97% accuracy, while preventing impersonation 91% of the time.

Huang, Xu, Ahmed, Muhammad R., Rojas, Raul Fernandez, Cui, Hongyan, Aseeri, Mohammed.  2016.  Effective Algorithm for Protecting WSNs from Internal Attacks in Real-time. Proceedings of the Australasian Computer Science Week Multiconference. :40:1–40:7.

Wireless sensor networks (WSNs) are playing a vital role in collecting data about a natural or built environment. WSNs have attractive advantages such as low-cost, low maintains and flexible arrangements for applications. Wireless sensor network has been used for many different applications such as military implementations in a battlefield, an environmental monitoring, and multifunction in health sector. In order to ensure its functionality, especially in malicious environments, security mechanisms become essential. Especially internal attacks have gained prominence and pose most challenging threats to all WSNs. Although, a number of works have been done to discuss a WSN under the internal attacks it has gained little attention. For example, the conventional cryptographic technique does not give the appropriated security to save the network from internal attack that causes by abnormally behaviour at the legitimate nodes in a network. In this paper, we propose an effective algorithm to make an evaluation for detecting internal attack by multi-criteria in real time. This protecting is based on the combination of the multiple pieces of evidences collected from the nodes under an internal attacker in a network. A theory of the decision is carefully discussed based on the Dempster-Shafer Theory (DST). If you really wanted to make sure the designed network works exactly works as you expected, you will be benefited from this algorithm. The advantage of this proposed method is not just its performance in real-time but also it is effective as it does not need the knowledge about the normal or malicious node in advance with very high average accuracy that is close to 100%. It also can be used as one of maintaining tools for the regulations of the deployed WSNs.

Naureen, Ayesha, Zhang, Ning.  2016.  A Comparative Study of Data Aggregation Approaches for Wireless Sensor Networks. Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :125–128.

In Wireless Sensor Networks (WSNs), data aggregation has been used to reduce bandwidth and energy costs during a data collection process. However, data aggregation, while bringing us the benefit of improving bandwidth usage and energy efficiency, also introduces opportunities for security attacks, thus reducing data delivery reliability. There is a trade-off between bandwidth and energy efficiency and achieving data delivery reliability. In this paper, we present a comparative study on the reliability and efficiency characteristics of different data aggregation approaches using both simulation studies and test bed evaluations. We also analyse the factors that contribute to network congestion and affect data delivery reliability. Finally, we investigate an optimal trade-off between reliability and efficiency properties of the different approaches by using an intermediate approach, called Multi-Aggregator based Multi-Cast (MAMC) data aggregation approach. Our evaluation results for MAMC show that it is possible to achieve reliability and efficiency at the same time.

Zhu, Jun, Chu, Bill, Lipford, Heather.  2016.  Detecting Privilege Escalation Attacks Through Instrumenting Web Application Source Code. Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies. :73–80.

Privilege Escalation is a common and serious type of security attack. Although experience shows that many applications are vulnerable to such attacks, attackers rarely succeed upon first trial. Their initial probing attempts often fail before a successful breach of access control is achieved. This paper presents an approach to automatically instrument application source code to report events of failed access attempts that may indicate privilege escalation attacks to a run time application protection mechanism. The focus of this paper is primarily on the problem of instrumenting web application source code to detect access control attack events. We evaluated false positives and negatives of our approach using two open source web applications.

Dang, Hung, Chong, Yun Long, Brun, Francois, Chang, Ee-Chien.  2016.  Practical and Scalable Sharing of Encrypted Data in Cloud Storage with Key Aggregation. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :69–80.

We study a sensor network setting in which samples are encrypted individually using different keys and maintained on a cloud storage. For large systems, e.g. those that generate several millions of samples per day, fine-grained sharing of encrypted samples is challenging. Existing solutions, such as Attribute-Based Encryption (ABE) and Key Aggregation Cryptosystem (KAC), can be utilized to address the challenge, but only to a certain extent. They are often computationally expensive and thus unlikely to operate at scale. We propose an algorithmic enhancement and two heuristics to improve KAC's key reconstruction cost, while preserving its provable security. The improvement is particularly significant for range and down-sampling queries – accelerating the reconstruction cost from quadratic to linear running time. Experimental study shows that for queries of size 32k samples, the proposed fast reconstruction techniques speed-up the original KAC by at least 90 times on range and down-sampling queries, and by eight times on general (arbitrary) queries. It also shows that at the expense of splitting the query into 16 sub-queries and correspondingly issuing that number of different aggregated keys, reconstruction time can be reduced by 19 times. As such, the proposed techniques make KAC more applicable in practical scenarios such as sensor networks or the Internet of Things.

Won, Jongho, Bertino, Elisa.  2016.  Inside Attack Filtering for Robust Sensor Localization. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :931–936.

Several solutions have recently been proposed to securely estimate sensor positions even when there is malicious location information which distorts the estimate. Some of those solutions are based on the Minimum Mean Square Estimation (MMSE) methods which efficiently estimate sensor positions. Although such solutions can filter out most of malicious information, if an attacker knows the position of a target sensor, the attacker can significantly alter the position information. In this paper, we introduce such a new attack, called Inside-Attack, and a technique that is able to detect and filter out malicious location information. Based on this technique, we propose an algorithm to effectively estimate sensor positions. We illustrate the impact of inside attacks on the existing algorithms and report simulation results concerning our algorithm.

Mohamed, Manar, Shrestha, Babins, Saxena, Nitesh.  2016.  SMASheD: Sniffing and Manipulating Android Sensor Data. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :152–159.

The current Android sensor security model either allows only restrictive read access to sensitive sensors (e.g., an app can only read its own touch data) or requires special install-time permissions (e.g., to read microphone, camera or GPS). Moreover, Android does not allow write access to any of the sensors. Sensing-based security applications therefore crucially rely upon the sanity of the Android sensor security model. In this paper, we show that such a model can be effectively circumvented. Specifically, we build SMASheD, a legitimate framework under the current Android ecosystem that can be used to stealthily sniff as well as manipulate many of the Android's restricted sensors (even touch input). SMASheD exploits the Android Debug Bridge (ADB) functionality and enables a malicious app with only the INTERNET permission to read, and write to, multiple different sensor data files at will. SMASheD is the first framework, to our knowledge, that can sniff and manipulate protected sensors on unrooted Android devices, without user awareness, without constant device-PC connection and without the need to infect the PC. The primary contributions of this work are two-fold. First, we design and develop the SMASheD framework. Second, as an offensive implication of the SMASheD framework, we introduce a wide array of potentially devastating attacks. Our attacks against the touchsensor range from accurately logging the touchscreen input (TouchLogger) to injecting touch events for accessing restricted sensors and resources, installing and granting special permissions to other malicious apps, accessing user accounts, and authenticating on behalf of the user –- essentially almost doing whatever the device user can do (secretively). Our attacks against various physical sensors (motion, position and environmental) can subvert the functionality provided by numerous existing sensing-based security applications, including those used for(continuous) authentication, and authorization.

Iakovakis, Dimitrios, Hadjileontiadis, Leontios.  2016.  Standing Hypotension Prediction Based on Smartwatch Heart Rate Variability Data: A Novel Approach. Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. :1109–1112.

The number of wearable and smart devices which are connecting every day in the Internet of Things (IoT) is continuously growing. We have a great opportunity though to improve the quality of life (QoL) standards by adding medical value to these devices. Especially, by exploiting IoT technology, we have the potential to create useful tools which utilize the sensors to provide biometric data. This novel study aims to use a smartwatch, independent from other hardware, to predict the Blood Pressure (BP) drop caused by postural changes. In cases that the drop is due to orthostatic hypotension (OH) can cause dizziness or even faint factors, which increase the risk of fall in the elderly but, as well as, in younger groups of people. A mathematical prediction model is proposed here which can reduce the risk of fall due to OH by sensing heart rate variability (data and drops in systolic BP after standing in a healthy group of 10 subjects. The experimental results justify the efficiency of the model, as it can perform correct prediction in 86.7% of the cases, and are encouraging enough for extending the proposed approach to pathological cases, such as patients with Parkinson's disease, involving large scale experiments.

Xue, Wanli, Luo, Chengwen, Rana, Rajib, Hu, Wen, Seneviratne, Aruna.  2016.  CScrypt: A Compressive-Sensing-Based Encryption Engine for the Internet of Things: Demo Abstract. Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM. :286–287.

Internet of Things (IoT) have been connecting the physical world seamlessly and provides tremendous opportunities to a wide range of applications. However, potential risks exist when IoT system collects local sensor data and uploads to the Cloud. The private data leakage can be severe with curious database administrator or malicious hackers who compromise the Cloud. In this demo, we solve this problem of guaranteeing the user data privacy and security using compressive sensing based cryptographic method. We present CScrypt, a compressive-sensing-based encryption engine for the Cloud-enabled IoT systems to secure the interaction between the IoT devices and the Cloud. Our system exploits the fact that each individual's biometric data can be trained to a unique dictionary which can be used as an encryption key meanwhile to compress the original data. We will demonstrate a functioning prototype of our system using live data stream when attending the conference.

Abo-alian, Alshaimaa, Badr, Nagwa L., Tolba, M. F..  2016.  Authentication As a Service for Cloud Computing. Proceedings of the International Conference on Internet of Things and Cloud Computing. :10:1–10:7.

Traditional authentication techniques such as static passwords are vulnerable to replay and guessing attacks. Recently, many studies have been conducted on keystroke dynamics as a promising behavioral biometrics for strengthening user authentication, however, current keystroke based solutions suffer from a numerous number of features with an insufficient number of samples which lead to a high verification error rate and high verification time. In this paper, a keystroke dynamics based authentication system is proposed for cloud environments that supports fixed and free text samples. The proposed system utilizes the ReliefF dimensionality reduction method, as a preprocessing step, to minimize the feature space dimensionality. The proposed system applies clustering to users' profile templates to reduce the verification time. The proposed system is applied to two different benchmark datasets. Experimental results prove the effectiveness and efficiency of the proposed system.

Gong, Neil Zhenqiang, Payer, Mathias, Moazzezi, Reza, Frank, Mario.  2016.  Forgery-Resistant Touch-based Authentication on Mobile Devices. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :499–510.

Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random "secret". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.

Queiroz, Rodrigo, Berger, Thorsten, Czarnecki, Krzysztof.  2016.  Towards Predicting Feature Defects in Software Product Lines. Proceedings of the 7th International Workshop on Feature-Oriented Software Development. :58–62.

Defect-prediction techniques can enhance the quality assurance activities for software systems. For instance, they can be used to predict bugs in source files or functions. In the context of a software product line, such techniques could ideally be used for predicting defects in features or combinations of features, which would allow developers to focus quality assurance on the error-prone ones. In this preliminary case study, we investigate how defect prediction models can be used to identify defective features using machine-learning techniques. We adapt process metrics and evaluate and compare three classifiers using an open-source product line. Our results show that the technique can be effective. Our best scenario achieves an accuracy of 73 % for accurately predicting features as defective or clean using a Naive Bayes classifier. Based on the results we discuss directions for future work.

Beaumont, Mark, McCarthy, Jim, Murray, Toby.  2016.  The Cross Domain Desktop Compositor: Using Hardware-based Video Compositing for a Multi-level Secure User Interface. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :533–545.

We have developed the Cross Domain Desktop Compositor, a hardware-based multi-level secure user interface, suitable for deployment in high-assurance environments. Through composition of digital display data from multiple physically-isolated single-level secure domains, and judicious switching of keyboard and mouse input, we provide an integrated multi-domain desktop solution. The system developed enforces a strict information flow policy and requires no trusted software. To fulfil high-assurance requirements and achieve a low cost of accreditation, the architecture favours simplicity, using mainly commercial-off-the-shelf components complemented by small trustworthy hardware elements. The resulting user interface is intuitive and responsive and we show how it can be further leveraged to create integrated multi-level applications and support managed information flows for secure cross domain solutions. This is a new approach to the construction of multi-level secure user interfaces and multi-level applications which minimises the required trusted computing base, whilst maintaining much of the desired functionality.

Ben Dhief, Yosra, Djemaiel, Yacine, Rekhis, Slim, Boudriga, Noureddine.  2016.  A Novel Sensor Cloud Based SCADA Infrastructure for Monitoring and Attack Prevention. Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media. :45–49.

The infrastructures of Supervisory Control and Data Acquisition (SCADA) systems have evolved through time in order to provide more efficient supervision services. Despite the changes made on SCADA architectures, several enhancements are still required to address the need for: a) large scale supervision using a high number of sensors, b) reduction of the reaction time when a malicious activity is detected; and c) the assurance of a high interoperability between SCADA systems in order to prevent the propagation of incidents. In this context, we propose a novel sensor cloud based SCADA infrastructure to monitor large scale and inter-dependant critical infrastructures, making an effective use of sensor clouds to increase the supervision coverage and the processing time. It ensures also the interoperability between interdependent SCADAs by offering a set of services to SCADA, which are created through the use of templates and are associated to set of virtual sensors. A simulation is conducted to demonstrate the effectiveness of the proposed architecture.

Huang, Haixing, Song, Jinghe, Lin, Xuelian, Ma, Shuai, Huai, Jinpeng.  2016.  TGraph: A Temporal Graph Data Management System. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2469–2472.

Temporal graphs are a class of graphs whose nodes and edges, together with the associated properties, continuously change over time. Recently, systems have been developed to support snapshot queries over temporal graphs. However, these systems barely support aggregate time range queries. Moreover, these systems cannot guarantee ACID transactions, an important feature for data management systems as long as concurrent processing is involved. To solve these issues, we design and develop TGraph, a temporal graph data management system, that assures the ACID transaction feature, and supports fast temporal graph queries.

Ghanim, Yasser.  2016.  Toward a Specialized Quality Management Maturity Assessment Model. Proceedings of the 2Nd Africa and Middle East Conference on Software Engineering. :1–8.

SW Quality Assessment models are either too broad such as CMMI-DEV and SPICE that cover the full software development life cycle (SDLC), or too narrow such as TMMI and TPI that focus on testing. Quality Management as a main concern within the software industry is broader than the concept of testing. The V-Model sets a broader view with the concepts of Verification and Validation. Quality Assurance (QA) is another broader term that includes quality of processes. Configuration audits add more scope. In parallel there are some less visible dimensions in quality not often addressed in traditional models such as business alignment of QA efforts. This paper compares the commonly accepted models related to software quality management and proposes a model that fills an empty space in this area. The paper provides some analysis of the concepts of maturity and capability levels and provides some proposed adaptations for quality management assessment.

Kumar, S. Dinesh, Thapliyal, Himanshu.  2016.  QUALPUF: A Novel Quasi-Adiabatic Logic Based Physical Unclonable Function. Proceedings of the 11th Annual Cyber and Information Security Research Conference. :24:1–24:4.

In the recent years, silicon based Physical Unclonable Function (PUF) has evolved as one of the popular hardware security primitives. PUFs are a class of circuits that use the inherent variations in the Integrated Circuit (IC) manufacturing process to create unique and unclonable IDs. There are various security related applications of PUFs such as IC counterfeiting, piracy detection, secure key management etc. In this paper, we are presenting a novel QUasi-Adiabatic Logic based PUF (QUALPUF) which is designed using energy recovery technique. To the best of our knowledge, this is the first work on the hardware design of PUF using adiabatic logic. The proposed design is energy efficient compared to recent designs of hardware PUFs proposed in the literature. Further, we are proposing a novel bit extraction method for our proposed PUF which improves the space set of challenge-response pairs. QUALPUF is evaluated in security metrics including reliability, uniqueness, uniformity and bit-aliasing. Power and area of QUALPUF is also presented. SPICE simulations show that QUALPUF consumes 0.39μ Watt of power to generate a response bit.

Hari, Adiseshu, Lakshman, T. V..  2016.  The Internet Blockchain: A Distributed, Tamper-Resistant Transaction Framework for the Internet. Proceedings of the 15th ACM Workshop on Hot Topics in Networks. :204–210.

Existing security mechanisms for managing the Internet infrastructural resources like IP addresses, AS numbers, BGP advertisements and DNS mappings rely on a Public Key Infrastructure (PKI) that can be potentially compromised by state actors and Advanced Persistent Threats (APTs). Ideally the Internet infrastructure needs a distributed and tamper-resistant resource management framework which cannot be subverted by any single entity. A secure, distributed ledger enables such a mechanism and the blockchain is the best known example of distributed ledgers. In this paper, we propose the use of a blockchain based mechanism to secure the Internet BGP and DNS infrastructure. While the blockchain has scaling issues to be overcome, the key advantages of such an approach include the elimination of any PKI-like root of trust, a verifiable and distributed transaction history log, multi-signature based authorizations for enhanced security, easy extensibility and scriptable programmability to secure new types of Internet resources and potential for a built in cryptocurrency. A tamper resistant DNS infrastructure also ensures that it is not possible for the application level PKI to spoof HTTPS traffic.

Luh, Robert, Schrittwieser, Sebastian, Marschalek, Stefan.  2016.  TAON: An Ontology-based Approach to Mitigating Targeted Attacks. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :303–312.

Targeted attacks on IT systems are a rising threat against the confidentiality of sensitive data and the availability of systems and infrastructures. Planning for the eventuality of a data breach or sabotage attack has become an increasingly difficult task with the emergence of advanced persistent threats (APTs), a class of highly sophisticated cyber-attacks that are nigh impossible to detect using conventional signature-based systems. Understanding, interpreting, and correlating the particulars of such advanced targeted attacks is a major research challenge that needs to be tackled before behavior-based approaches can evolve from their current state to truly semantics-aware solutions. Ontologies offer a versatile foundation well suited for depicting the complex connections between such behavioral data and the diverse technical and organizational properties of an IT system. In order to facilitate the development of novel behavior-based detection systems, we present TAON, an OWL-based ontology offering a holistic view on actors, assets, and threat details, which are mapped to individual abstracted events and anomalies that can be detected by today's monitoring data providers. TOAN offers a straightforward means to plan an organization's defense against APTs and helps to understand how, why, and by whom certain resources are targeted. Populated by concrete data, the proposed ontology becomes a smart correlation framework able to combine several data sources into a semantic assessment of any targeted attack.

Sisiaridis, Dimitrios, Carcillo, Fabrizio, Markowitch, Olivier.  2016.  A Framework for Threat Detection in Communication Systems. Proceedings of the 20th Pan-Hellenic Conference on Informatics. :68:1–68:6.

We propose a modular framework which deploys state-of-the art techniques in dynamic pattern matching as well as machine learning algorithms for Big Data predictive and be-havioural analytics to detect threats and attacks in Managed File Transfer and collaboration platforms. We leverage the use of the kill chain model by looking for indicators of compromise either for long-term attacks as Advanced Persistent Threats, zero-day attacks or DDoS attacks. The proposed engine can act complimentary to existing security services as SIEMs, IDS, IPS and firewalls.

Thakar, Bhavik, Parekh, Chandresh.  2016.  Advance Persistent Threat: Botnet. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :143:1–143:6.

Growth of internet era and corporate sector dealings communication online has introduced crucial security challenges in cyber space. Statistics of recent large scale attacks defined new class of threat to online world, advanced persistent threat (APT) able to impact national security and economic stability of any country. From all APTs, botnet is one of the well-articulated and stealthy attacks to perform cybercrime. Botnet owners and their criminal organizations are continuously developing innovative ways to infect new targets into their networks and exploit them. The concept of botnet refers collection of compromised computers (bots) infected by automated software robots, that interact to accomplish some distributed task which run without human intervention for illegal purposes. They are mostly malicious in nature and allow cyber criminals to control the infected machines remotely without the victim's knowledge. They use various techniques, communication protocols and topologies in different stages of their lifecycle; also specifically they can upgrade their methods at any time. Botnet is global in nature and their target is to steal or destroy valuable information from organizations as well as individuals. In this paper we present real world botnet (APTs) survey.

Applebaum, Andy, Miller, Doug, Strom, Blake, Korban, Chris, Wolf, Ross.  2016.  Intelligent, Automated Red Team Emulation. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :363–373.

Red teams play a critical part in assessing the security of a network by actively probing it for weakness and vulnerabilities. Unlike penetration testing - which is typically focused on exploiting vulnerabilities - red teams assess the entire state of a network by emulating real adversaries, including their techniques, tactics, procedures, and goals. Unfortunately, deploying red teams is prohibitive: cost, repeatability, and expertise all make it difficult to consistently employ red team tests. We seek to solve this problem by creating a framework for automated red team emulation, focused on what the red team does post-compromise - i.e., after the perimeter has been breached. Here, our program acts as an automated and intelligent red team, actively moving through the target network to test for weaknesses and train defenders. At its core, our framework uses an automated planner designed to accurately reason about future plans in the face of the vast amount of uncertainty in red teaming scenarios. Our solution is custom-developed, built on a logical encoding of the cyber environment and adversary profiles, using techniques from classical planning, Markov decision processes, and Monte Carlo simulations. In this paper, we report on the development of our framework, focusing on our planning system. We have successfully validated our planner against other techniques via a custom simulation. Our tool itself has successfully been deployed to identify vulnerabilities and is currently used to train defending blue teams.

Siddiqui, Sana, Khan, Muhammad Salman, Ferens, Ken, Kinsner, Witold.  2016.  Detecting Advanced Persistent Threats Using Fractal Dimension Based Machine Learning Classification. Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics. :64–69.

Advanced Persistent Threats (APTs) are a new breed of internet based smart threats, which can go undetected with the existing state of-the-art internet traffic monitoring and protection systems. With the evolution of internet and cloud computing, a new generation of smart APT attacks has also evolved and signature based threat detection systems are proving to be futile and insufficient. One of the essential strategies in detecting APTs is to continuously monitor and analyze various features of a TCP/IP connection, such as the number of transferred packets, the total count of the bytes exchanged, the duration of the TCP/IP connections, and details of the number of packet flows. The current threat detection approaches make extensive use of machine learning algorithms that utilize statistical and behavioral knowledge of the traffic. However, the performance of these algorithms is far from satisfactory in terms of reducing false negatives and false positives simultaneously. Mostly, current algorithms focus on reducing false positives, only. This paper presents a fractal based anomaly classification mechanism, with the goal of reducing both false positives and false negatives, simultaneously. A comparison of the proposed fractal based method with a traditional Euclidean based machine learning algorithm (k-NN) shows that the proposed method significantly outperforms the traditional approach by reducing false positive and false negative rates, simultaneously, while improving the overall classification rates.