Visible to the public Biblio

Filters: Keyword is lightweight blockchain  [Clear All Filters]
2021-07-07
Alkhazaali, Ali Haleem, ATA, Oğuz.  2020.  Lightweight fog based solution for privacy-preserving in IoT using blockchain. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–10.
Internet of things (IoT) mainly depends on clouds to process and store their data. Clouds cannot handle the volume and velocity of data generated by IoT. IoT is delay-sensitive and resources limited. Fog computing proposed endorsing the internet of things (IoT) demands. Fog computing extends the cloud computing service to the edge of the network. Fog utilization reduces response time and network overhead while maintaining security aspects. isolation and operating system (OS) dependency achieved by using virtualization. Blockchain proposed to solve the security and privacy of fog computing. Blockchain is a decentralized, immutable ledger. fog computing with blockchain proposed as an IoT infrastructure. Fog computing adopted with lightweight blockchain in this proposed work. This adaptation endorses the IoT demands for low response time with limited resources. This paper explores system applicability. Varies from other papers that focus on one factor such as privacy or security-applicability of the proposed model achieved by concentration different IoT needs and limits. Response time and ram usage with 1000 transactions did not encroach 100s and 300MiB in the proposed model.
2021-04-08
Mori, S..  2020.  A Fundamental Analysis of Caching Data Protection Scheme using Light-weight Blockchain and Hashchain for Information-centric WSNs. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :200–201.
This paper explains a novel caching data protection scheme that uses lightweight blockchain and hashchain for information-centric wireless sensor networks. The proposed verification procedure in a Blockchain is conducted based on the proof-of-consensus validation mechanism without using exhaustive mining computations; therefore, our scheme is suitable for resource-shortage wireless and mobile devices. Hashchains are utilized for traceability and signatures that ensure a block's validity. We make a primitive evaluation of the scheme using computer simulations in familiar low-power wide-area wireless environments.
2020-11-17
Khakurel, U., Rawat, D., Njilla, L..  2019.  2019 IEEE International Conference on Industrial Internet (ICII). 2019 IEEE International Conference on Industrial Internet (ICII). :241—247.

FastChain is a simulator built in NS-3 which simulates the networked battlefield scenario with military applications, connecting tankers, soldiers and drones to form Internet-of-Battlefield-Things (IoBT). Computing, storage and communication resources in IoBT are limited during certain situations in IoBT. Under these circumstances, these resources should be carefully combined to handle the task to accomplish the mission. FastChain simulator uses Sharding approach to provide an efficient solution to combine resources of IoBT devices by identifying the correct and the best set of IoBT devices for a given scenario. Then, the set of IoBT devices for a given scenario collaborate together for sharding enabled Blockchain technology. Interested researchers, policy makers and developers can download and use the FastChain simulator to design, develop and evaluate blockchain enabled IoBT scenarios that helps make robust and trustworthy informed decisions in mission-critical IoBT environment.

2020-07-03
Fitwi, Alem, Chen, Yu, Zhu, Sencun.  2019.  A Lightweight Blockchain-Based Privacy Protection for Smart Surveillance at the Edge. 2019 IEEE International Conference on Blockchain (Blockchain). :552—555.

Witnessing the increasingly pervasive deployment of security video surveillance systems(VSS), more and more individuals have become concerned with the issues of privacy violations. While the majority of the public have a favorable view of surveillance in terms of crime deterrence, individuals do not accept the invasive monitoring of their private life. To date, however, there is not a lightweight and secure privacy-preserving solution for video surveillance systems. The recent success of blockchain (BC) technologies and their applications in the Internet of Things (IoT) shed a light on this challenging issue. In this paper, we propose a Lightweight, Blockchain-based Privacy protection (Lib-Pri) scheme for surveillance cameras at the edge. It enables the VSS to perform surveillance without compromising the privacy of people captured in the videos. The Lib-Pri system transforms the deployed VSS into a system that functions as a federated blockchain network capable of carrying out integrity checking, blurring keys management, feature sharing, and video access sanctioning. The policy-based enforcement of privacy measures is carried out at the edge devices for real-time video analytics without cluttering the network.