Visible to the public Biblio

Filters: Keyword is design of experiments  [Clear All Filters]
2021-03-22
Penugonda, S., Yong, S., Gao, A., Cai, K., Sen, B., Fan, J..  2020.  Generic Modeling of Differential Striplines Using Machine Learning Based Regression Analysis. 2020 IEEE International Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI). :226–230.
In this paper, a generic model for a differential stripline is created using machine learning (ML) based regression analysis. A recursive approach of creating various inputs is adapted instead of traditional design of experiments (DoE) approach. This leads to reduction of number of simulations as well as control the data points required for performing simulations. The generic model is developed using 48 simulations. It is comparable to the linear regression model, which is obtained using 1152 simulations. Additionally, a tabular W-element model of a differential stripline is used to take into consideration the frequency-dependent dielectric loss. In order to demonstrate the expandability of this approach, the methodology was applied to two differential pairs of striplines in the frequency range of 10 MHz to 20 GHz.
2020-07-06
Castillo, Anya, Arguello, Bryan, Cruz, Gerardo, Swiler, Laura.  2019.  Cyber-Physical Emulation and Optimization of Worst-Case Cyber Attacks on the Power Grid. 2019 Resilience Week (RWS). 1:14–18.

In this paper we report preliminary results from the novel coupling of cyber-physical emulation and interdiction optimization to better understand the impact of a CrashOverride malware attack on a notional electric system. We conduct cyber experiments where CrashOverride issues commands to remote terminal units (RTUs) that are controlling substations within a power control area. We identify worst-case loss of load outcomes with cyber interdiction optimization; the proposed approach is a bilevel formulation that incorporates RTU mappings to controllable loads, transmission lines, and generators in the upper-level (attacker model), and a DC optimal power flow (DCOPF) in the lower-level (defender model). Overall, our preliminary results indicate that the interdiction optimization can guide the design of experiments instead of performing a “full factorial” approach. Likewise, for systems where there are important dependencies between SCADA/ICS controls and power grid operations, the cyber-physical emulations should drive improved parameterization and surrogate models that are applied in scalable optimization techniques.