Visible to the public Biblio

Filters: Keyword is privacy guarantees  [Clear All Filters]
2021-01-11
Lyu, L..  2020.  Lightweight Crypto-Assisted Distributed Differential Privacy for Privacy-Preserving Distributed Learning. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
The appearance of distributed learning allows multiple participants to collaboratively train a global model, where instead of directly releasing their private training data with the server, participants iteratively share their local model updates (parameters) with the server. However, recent attacks demonstrate that sharing local model updates is not sufficient to provide reasonable privacy guarantees, as local model updates may result in significant privacy leakage about local training data of participants. To address this issue, in this paper, we present an alternative approach that combines distributed differential privacy (DDP) with a three-layer encryption protocol to achieve a better privacy-utility tradeoff than the existing DP-based approaches. An unbiased encoding algorithm is proposed to cope with floating-point values, while largely reducing mean squared error due to rounding. Our approach dispenses with the need for any trusted server, and enables each party to add less noise to achieve the same privacy and similar utility guarantees as that of the centralized differential privacy. Preliminary analysis and performance evaluation confirm the effectiveness of our approach, which achieves significantly higher accuracy than that of local differential privacy approach, and comparable accuracy to the centralized differential privacy approach.
2020-12-28
Cominelli, M., Gringoli, F., Patras, P., Lind, M., Noubir, G..  2020.  Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization of Bluetooth Classic Devices. 2020 IEEE Symposium on Security and Privacy (SP). :534—548.

Bluetooth Classic (BT) remains the de facto connectivity technology in car stereo systems, wireless headsets, laptops, and a plethora of wearables, especially for applications that require high data rates, such as audio streaming, voice calling, tethering, etc. Unlike in Bluetooth Low Energy (BLE), where address randomization is a feature available to manufactures, BT addresses are not randomized because they are largely believed to be immune to tracking attacks. We analyze the design of BT and devise a robust de-anonymization technique that hinges on the apparently benign information leaking from frame encoding, to infer a piconet's clock, hopping sequence, and ultimately the Upper Address Part (UAP) of the master device's physical address, which are never exchanged in clear. Used together with the Lower Address Part (LAP), which is present in all frames transmitted, this enables tracking of the piconet master, thereby debunking the privacy guarantees of BT. We validate this attack by developing the first Software-defined Radio (SDR) based sniffer that allows full BT spectrum analysis (79 MHz) and implements the proposed de-anonymization technique. We study the feasibility of privacy attacks with multiple testbeds, considering different numbers of devices, traffic regimes, and communication ranges. We demonstrate that it is possible to track BT devices up to 85 meters from the sniffer, and achieve more than 80% device identification accuracy within less than 1 second of sniffing and 100% detection within less than 4 seconds. Lastly, we study the identified privacy attack in the wild, capturing BT traffic at a road junction over 5 days, demonstrating that our system can re-identify hundreds of users and infer their commuting patterns.

2020-07-09
Fahrenkrog-Petersen, Stephan A., van der Aa, Han, Weidlich, Matthias.  2019.  PRETSA: Event Log Sanitization for Privacy-aware Process Discovery. 2019 International Conference on Process Mining (ICPM). :1—8.

Event logs that originate from information systems enable comprehensive analysis of business processes, e.g., by process model discovery. However, logs potentially contain sensitive information about individual employees involved in process execution that are only partially hidden by an obfuscation of the event data. In this paper, we therefore address the risk of privacy-disclosure attacks on event logs with pseudonymized employee information. To this end, we introduce PRETSA, a novel algorithm for event log sanitization that provides privacy guarantees in terms of k-anonymity and t-closeness. It thereby avoids disclosure of employee identities, their membership in the event log, and their characterization based on sensitive attributes, such as performance information. Through step-wise transformations of a prefix-tree representation of an event log, we maintain its high utility for discovery of a performance-annotated process model. Experiments with real-world data demonstrate that sanitization with PRETSA yields event logs of higher utility compared to methods that exploit frequency-based filtering, while providing the same privacy guarantees.