Visible to the public Biblio

Filters: Keyword is high-level language  [Clear All Filters]
2021-02-22
Rivera, S., Fei, Z., Griffioen, J..  2020.  POLANCO: Enforcing Natural Language Network Policies. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–9.
Network policies govern the use of an institution's networks, and are usually written in a high-level human-readable natural language. Normally these policies are enforced by low-level, technically detailed network configurations. The translation from network policies into network configurations is a tedious, manual and error-prone process. To address this issue, we propose a new intermediate language called POlicy LANguage for Campus Operations (POLANCO), which is a human-readable network policy definition language intended to approximate natural language. Because POLANCO is a high-level language, the translation from natural language policies to POLANCO is straightforward. Despite being a high-level human readable language, POLANCO can be used to express network policies in a technically precise way so that policies written in POLANCO can be automatically translated into a set of software defined networking (SDN) rules and actions that enforce the policies. Moreover, POLANCO is capable of incorporating information about the current network state, reacting to changes in the network and adjusting SDN rules to ensure network policies continue to be enforced correctly. We present policy examples found on various public university websites and show how they can be written as simplified human-readable statements using POLANCO and how they can be automatically translated into SDN rules that correctly enforce these policies.
2020-07-09
Ashouri, Mohammadreza.  2019.  Detecting Input Sanitization Errors in Scala. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :313—319.

Scala programming language combines object-oriented and functional programming in one concise, high-level language, and the language supports static types that help to avoid bugs in complex programs. This paper proposes a dynamic taint analyzer called ScalaTaint for Scala applications. The analyzer traces the propagation of malicious inputs from untrusted sources to sensitive sink methods in programs that can be exploited by adversaries. In this work, we evaluated the accuracy of ScalaTaint with a security benchmark suite including 7 projects in Scala. As a result, our analyzer could report 49 vulnerabilities within 753,372 lines of code. Moreover, the result of our performance measurement on ScalaBench shows 67% runtime overhead that demonstrates the usefulness and efficiently of our technique in comparison with similar tools.