Visible to the public Biblio

Filters: Keyword is hierarchical representations  [Clear All Filters]
2021-03-01
Taylor, E., Shekhar, S., Taylor, G. W..  2020.  Response Time Analysis for Explainability of Visual Processing in CNNs. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :1555–1558.
Explainable artificial intelligence (XAI) methods rely on access to model architecture and parameters that is not always feasible for most users, practitioners, and regulators. Inspired by cognitive psychology, we present a case for response times (RTs) as a technique for XAI. RTs are observable without access to the model. Moreover, dynamic inference models performing conditional computation generate variable RTs for visual learning tasks depending on hierarchical representations. We show that MSDNet, a conditional computation model with early-exit architecture, exhibits slower RT for images with more complex features in the ObjectNet test set, as well as the human phenomenon of scene grammar, where object recognition depends on intrascene object-object relationships. These results cast light on MSDNet's feature space without opening the black box and illustrate the promise of RT methods for XAI.
2020-07-09
Feyisetan, Oluwaseyi, Diethe, Tom, Drake, Thomas.  2019.  Leveraging Hierarchical Representations for Preserving Privacy and Utility in Text. 2019 IEEE International Conference on Data Mining (ICDM). :210—219.

Guaranteeing a certain level of user privacy in an arbitrary piece of text is a challenging issue. However, with this challenge comes the potential of unlocking access to vast data stores for training machine learning models and supporting data driven decisions. We address this problem through the lens of dx-privacy, a generalization of Differential Privacy to non Hamming distance metrics. In this work, we explore word representations in Hyperbolic space as a means of preserving privacy in text. We provide a proof satisfying dx-privacy, then we define a probability distribution in Hyperbolic space and describe a way to sample from it in high dimensions. Privacy is provided by perturbing vector representations of words in high dimensional Hyperbolic space to obtain a semantic generalization. We conduct a series of experiments to demonstrate the tradeoff between privacy and utility. Our privacy experiments illustrate protections against an authorship attribution algorithm while our utility experiments highlight the minimal impact of our perturbations on several downstream machine learning models. Compared to the Euclidean baseline, we observe \textbackslashtextgreater 20x greater guarantees on expected privacy against comparable worst case statistics.