Visible to the public Biblio

Filters: Keyword is cyber security information  [Clear All Filters]
2020-11-20
Wang, X., Herwono, I., Cerbo, F. D., Kearney, P., Shackleton, M..  2018.  Enabling Cyber Security Data Sharing for Large-scale Enterprises Using Managed Security Services. 2018 IEEE Conference on Communications and Network Security (CNS). :1—7.
Large enterprises and organizations from both private and public sectors typically outsource a platform solution, as part of the Managed Security Services (MSSs), from 3rd party providers (MSSPs) to monitor and analyze their data containing cyber security information. Sharing such data among these large entities is believed to improve their effectiveness and efficiency at tackling cybercrimes, via improved analytics and insights. However, MSS platform customers currently are not able or not willing to share data among themselves because of multiple reasons, including privacy and confidentiality concerns, even when they are using the same MSS platform. Therefore any proposed mechanism or technique to address such a challenge need to ensure that sharing is achieved in a secure and controlled way. In this paper, we propose a new architecture and use case driven designs to enable confidential, flexible and collaborative data sharing among such organizations using the same MSS platform. MSS platform is a complex environment where different stakeholders, including authorized MSSP personnel and customers' own users, have access to the same platform but with different types of rights and tasks. Hence we make every effort to improve the usability of the platform supporting sharing while keeping the existing rights and tasks intact. As an innovative and pioneering attempt to address the challenge of data sharing in the MSS platform, we hope to encourage further work to follow so that confidential and collaborative sharing eventually happens among MSS platform customers.
2020-07-10
Schäfer, Matthias, Fuchs, Markus, Strohmeier, Martin, Engel, Markus, Liechti, Marc, Lenders, Vincent.  2019.  BlackWidow: Monitoring the Dark Web for Cyber Security Information. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1—21.

The Dark Web, a conglomerate of services hidden from search engines and regular users, is used by cyber criminals to offer all kinds of illegal services and goods. Multiple Dark Web offerings are highly relevant for the cyber security domain in anticipating and preventing attacks, such as information about zero-day exploits, stolen datasets with login information, or botnets available for hire. In this work, we analyze and discuss the challenges related to information gathering in the Dark Web for cyber security intelligence purposes. To facilitate information collection and the analysis of large amounts of unstructured data, we present BlackWidow, a highly automated modular system that monitors Dark Web services and fuses the collected data in a single analytics framework. BlackWidow relies on a Docker-based micro service architecture which permits the combination of both preexisting and customized machine learning tools. BlackWidow represents all extracted data and the corresponding relationships extracted from posts in a large knowledge graph, which is made available to its security analyst users for search and interactive visual exploration. Using BlackWidow, we conduct a study of seven popular services on the Deep and Dark Web across three different languages with almost 100,000 users. Within less than two days of monitoring time, BlackWidow managed to collect years of relevant information in the areas of cyber security and fraud monitoring. We show that BlackWidow can infer relationships between authors and forums and detect trends for cybersecurity-related topics. Finally, we discuss exemplary case studies surrounding leaked data and preparation for malicious activity.