Visible to the public Biblio

Filters: Keyword is DC microgrid  [Clear All Filters]
2022-12-01
Zhang, Jingqiu, Raman, Gurupraanesh, Raman, Gururaghav, Peng, Jimmy Chih-Hsien, Xiao, Weidong.  2021.  A Resilient Scheme for Mitigating False Data Injection Attacks in Distributed DC Microgrids. 2021 IEEE Energy Conversion Congress and Exposition (ECCE). :1440–1446.
Although DC microgrids using a distributed cooperative control architecture can avoid the instability or shutdown issues caused by a single-point failure as compared to the centralized approach, limited global information in the former makes it difficult to detect cyber attacks. Here, we present a false data injection attack (FDIA)–-termed as a local control input attack–-targeting voltage observers in the secondary controllers and control loops in the primary controllers. Such an attack cannot be detected by only observing the performance of the estimated voltage of each agent, thereby posing a potential threat to the system operation. To address this, a detection method using the outputs of the voltage observers is developed to identify the exact location of an FDIA. The proposed approach is based on the characteristics of the distributed cooperative network and avoids heavy dependency on the system model parameters. Next, an event-driven mitigation approach is deployed to substitute the attacked element with a reconstructed signal upon the detection of an attack. Finally, the effectiveness of the proposed resilient scheme is validated using simulation results.
2022-03-23
Karimi, A., Ahmadi, A., Shahbazi, Z., Shafiee, Q., Bevrani, H..  2021.  A Resilient Control Method Against False Data Injection Attack in DC Microgrids. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). :1—6.

The expression of cyber-attacks on communication links in smart grids has emerged recently. In microgrids, cooperation between agents through communication links is required, thus, microgrids can be considered as cyber-physical-systems and they are vulnerable to cyber-attack threats. Cyber-attacks can cause damages in control systems, therefore, the resilient control methods are necessary. In this paper, a resilient control approach against false data injection attack is proposed for secondary control of DC microgrids. In the proposed framework, a PI controller with an adjustable gain is utilized to eliminate the injected false data. The proposed control method is employed for both sensor and link attacks. Convergence analysis of the measurement sensors and the secondary control objectives under the studied control method is performed. Finally, a DC microgrid with four units is built in Matlab/Simulink environment to verify the proposed approach.

2021-03-22
Hosseinipour, A., Hojabri, H..  2020.  Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Transactions on Smart Grid. 11:3737–3747.
Series DC electric springs (DCESs) are a state-of-the-art demand-side management (DSM) technology with the capability to reduce energy storage requirements of DC microgrids by manipulating the power of non-critical loads (NCLs). As the stability of DC microgrids is highly prone to dynamic interactions between the system active and passive components, this study intends to conduct a comprehensive small-signal stability analysis of a community DC microgrid integrated with distributed DCESs considering the effect of destabilizing constant power loads (CPLs). For this purpose, after deriving the small-signal model of a DCES-integrated microgrid, the sensitivity of the system dominant frequency modes to variations of various physical and control parameters is evaluated by means of eigenvalue analysis. Next, an active damping control method based on virtual RC parallel impedance is proposed for series DCESs to compensate for their slow dynamic response and to provide a dynamic stabilization function within the microgrid. Furthermore, impedance-based stability analysis is utilized to study the DC microgrid expandability in terms of integration with multiple DCESs. Finally, several case studies are presented to verify analytical findings of the paper and to evaluate the dynamic performance of the DC microgrid.
2020-07-20
Huang, Rui, Wang, Panbao, Zaery, Mohamed, Wei, Wang, Xu, Dianguo.  2019.  A Distributed Fixed-Time Secondary Controller for DC Microgrids. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–6.

This paper proposes a distributed fixed-time based secondary controller for the DC microgrids (MGs) to overcome the drawbacks of conventional droop control. The controller, based on a distributed fixed-time control approach, can remove the DC voltage deviation and provide proportional current sharing simultaneously within a fixed-time. Comparing with the conventional centralized secondary controller, the controller, using the dynamic consensus, on each converter communicates only with its neighbors on a communication graph which increases the convergence speed and gets an improved performance. The proposed control strategy is simulated in PLECS to test the controller performance, link-failure resiliency, plug and play capability and the feasibility under different time delays.