Li, Chunhua, He, Jinbiao, Lei, Cheng, Guo, Chan, Zhou, Ke.
2018.
Achieving Privacy-Preserving CP-ABE Access Control with Multi-Cloud. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :801—808.
Cloud storage service makes it very convenient for people to access and share data. At the same time, the confidentiality and privacy of user data is also facing great challenges. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme is widely considered to be the most suitable security access control technology for cloud storage environment. Aiming at the problem of privacy leakage caused by single-cloud CP-ABE which is commonly adopted in the current schemes, this paper proposes a privacy-preserving CP-ABE access control scheme using multi-cloud architecture. By improving the traditional CP-ABE algorithm and introducing a proxy to cut the user's private key, it can ensure that only a part of the user attribute set can be obtained by a single cloud, which effectively protects the privacy of user attributes. Meanwhile, the intermediate logical structure of the access policy tree is stored in proxy, and only the leaf node information is stored in the ciphertext, which effectively protects the privacy of the access policy. Security analysis shows that our scheme is effective against replay and man-in-the-middle attacks, as well as user collusion attack. Experimental results also demonstrates that the multi-cloud CP-ABE does not significantly increase the overhead of storage and encryption compared to the single cloud scheme, but the access control overhead decreases as the number of clouds increases. When the access policy is expressed with a AND gate structure, the decryption overhead is obviously less than that of a single cloud environment.
Xiang, Guangli, Li, Beilei, Fu, Xiannong, Xia, Mengsen, Ke, Weiyi.
2019.
An Attribute Revocable CP-ABE Scheme. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :198—203.
Ciphertext storage can effectively solve the security problems in cloud storage, among which the ciphertext policy attribute-based encryption (CP-ABE) is more suitable for ciphertext access control in cloud storage environment for it can achieve one-to-many ciphertext sharing. The existing attribute encryption scheme CP-ABE has problems with revocation such as coarse granularity, untimeliness, and low efficiency, which cannot meet the demands of cloud storage. This paper proposes an RCP-ABE scheme that supports real-time revocable fine-grained attributes for the existing attribute revocable scheme, the scheme of this paper adopts the version control technology to realize the instant revocation of the attributes. In the key update mechanism, the subset coverage technology is used to update the key, which reduces the workload of the authority. The experimental analysis shows that RCP-ABE is more efficient than other schemes.