Visible to the public Biblio

Filters: Keyword is complex attacks  [Clear All Filters]
2020-08-17
Djemaiel, Yacine, Fessi, Boutheina A., Boudriga, Noureddine.  2019.  Using Temporal Conceptual Graphs and Neural Networks for Big Data-Based Attack Scenarios Reconstruction. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :991–998.
The emergence of novel technologies and high speed networks has enabled a continually generation of huge volumes of data that should be stored and processed. These big data have allowed the emergence of new forms of complex attacks whose resolution represents a big challenge. Different methods and tools are developed to deal with this issue but definite detection is still needed since various features are not considered and tracing back an attack remains a timely activity. In this context, we propose an investigation framework that allows the reconstruction of complex attack scenarios based on huge volume of data. This framework used a temporal conceptual graph to represent the big data and the dependency between them in addition to the tracing back of the whole attack scenario. The selection of the most probable attack scenario is assisted by a developed decision model based on hybrid neural network that enables the real time classification of the possible attack scenarios using RBF networks and the convergence to the most potential attack scenario within the support of an Elman network. The efficiency of the proposed framework has been illustrated for the global attack reconstruction process targeting a smart city where a set of available services are involved.
2020-07-27
Tun, May Thet, Nyaung, Dim En, Phyu, Myat Pwint.  2019.  Performance Evaluation of Intrusion Detection Streaming Transactions Using Apache Kafka and Spark Streaming. 2019 International Conference on Advanced Information Technologies (ICAIT). :25–30.
In the information era, the size of network traffic is complex because of massive Internet-based services and rapid amounts of data. The more network traffic has enhanced, the more cyberattacks have dramatically increased. Therefore, cybersecurity intrusion detection has been a challenge in the current research area in recent years. The Intrusion detection system requires high-level protection and detects modern and complex attacks with more accuracy. Nowadays, big data analytics is the main key to solve marketing, security and privacy in an extremely competitive financial market and government. If a huge amount of stream data flows within a short period time, it is difficult to analyze real-time decision making. Performance analysis is extremely important for administrators and developers to avoid bottlenecks. The paper aims to reduce time-consuming by using Apache Kafka and Spark Streaming. Experiments on the UNSWNB-15 dataset indicate that the integration of Apache Kafka and Spark Streaming can perform better in terms of processing time and fault-tolerance on the huge amount of data. According to the results, the fault tolerance can be provided by the multiple brokers of Kafka and parallel recovery of Spark Streaming. And then, the multiple partitions of Apache Kafka increase the processing time in the integration of Apache Kafka and Spark Streaming.