Visible to the public Biblio

Filters: Keyword is analyzing user reviews  [Clear All Filters]
2020-07-30
Srisopha, Kamonphop, Phonsom, Chukiat, Lin, Keng, Boehm, Barry.  2019.  Same App, Different Countries: A Preliminary User Reviews Study on Most Downloaded iOS Apps. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :76—80.
Prior work on mobile app reviews has demonstrated that user reviews contain a wealth of information and are seen as a potential source of requirements. However, most of the studies done in this area mainly focused on mining and analyzing user reviews from the US App Store, leaving reviews of users from other countries unexplored. In this paper, we seek to understand if the perception of the same apps between users from other countries and that from the US differs through analyzing user reviews. We retrieve 300,643 user reviews of the 15 most downloaded iOS apps of 2018, published directly by Apple, from nine English-speaking countries over the course of 5 months. We manually classify 3,358 reviews into several software quality and improvement factors. We leverage a random forest based algorithm to identify factors that can be used to differentiate reviews between the US and other countries. Our preliminary results show that all countries have some factors that are proportionally inconsistent with the US.