Visible to the public Biblio

Filters: Keyword is Digital certificate  [Clear All Filters]
2023-06-29
Zavala, Álvaro, Maye, Leonel.  2022.  Application to manage digital certificates as a Certificate Authority (CA) according to the Digital Signature Law of El Salvador. 2022 IEEE 40th Central America and Panama Convention (CONCAPAN). :1–6.
Currently in El Salvador, efforts are being made to implement the digital signature and as part of this technology, a Public Key Infrastructure (PKI) is required, which must validate Certificate Authorities (CA). For a CA, it is necessary to implement the software that allows it to manage digital certificates and perform security procedures for the execution of cryptographic operations, such as encryption, digital signatures, and non-repudiation of electronic transactions. The present work makes a proposal for a digital certificate management system according to the Digital Signature Law of El Salvador and secure cryptography standards. Additionally, a security discussion is accomplished.
2022-09-30
Höglund, Joel, Raza, Shahid.  2021.  LICE: Lightweight certificate enrollment for IoT using application layer security. 2021 IEEE Conference on Communications and Network Security (CNS). :19–28.
To bring Internet-grade security to billions of IoT devices and make them first-class Internet citizens, IoT devices must move away from pre-shared keys to digital certificates. Public Key Infrastructure, PKI, the digital certificate management solution on the Internet, is inevitable to bring certificate-based security to IoT. Recent research efforts has shown the feasibility of PKI for IoT using Internet security protocols. New and proposed standards enable IoT devices to implement more lightweight solutions for application layer security, offering real end-to-end security also in the presence of proxies.In this paper we present LICE, an application layer enrollment protocol for IoT, an important missing piece before certificate-based security can be used with new IoT standards such as OSCORE and EDHOC. Using LICE, enrollment operations can complete by consuming less than 800 bytes of data, less than a third of the corresponding operations using state-of-art EST-coaps over DTLS. To show the feasibility of our solution, we implement and evaluate the protocol on real IoT hardware in a lossy low-power radio network environment.
2019-04-01
Wang, R., He, J., Liu, C., Li, Q., Tsai, W., Deng, E..  2018.  A Privacy-Aware PKI System Based on Permissioned Blockchains. 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). :928–931.

Public key infrastructure (PKI) is the foundation and core of network security construction. Blockchain (BC) has many technical characteristics, such as decentralization, impossibility of being tampered with and forged, which makes it have incomparable advantages in ensuring information credibility, security, traceability and other aspects of traditional technology. In this paper, a method of constructing PKI certificate system based on permissioned BC is proposed. The problems of multi-CA mutual trust, poor certificate configuration efficiency and single point failure in digital certificate system are solved by using the characteristics of BC distribution and non-tampering. At the same time, in order to solve the problem of identity privacy on BC, this paper proposes a privacy-aware PKI system based on permissioned BCs. This system is an anonymous digital certificate publishing scheme., which achieves the separation of user registration and authorization, and has the characteristics of anonymity and conditional traceability, so as to realize to protect user's identity privacy. The system meets the requirements of certificate security and anonymity, reduces the cost of CA construction, operation and maintenance in traditional PKI technology, and improves the efficiency of certificate application and configuration.

2015-05-04
Gvoqing Lu, Lingling Zhao, Kuihe Yang.  2014.  The design of the secure transmission and authorization management system based on RBAC. Machine Learning and Cybernetics (ICMLC), 2014 International Conference on. 1:103-108.

This paper designs a secure transmission and authorization management system which based on the principles of Public Key Infrastructure and Rose-Based Access Control. It can solve the problems of identity authentication, secure transmission and access control on internet. In the first place, according to PKI principles, certificate authority system is implemented. It can issue and revoke the server-side and client-side digital certificate. Data secure transmission is achieved through the combination of digital certificate and SSL protocol. In addition, this paper analyses access control mechanism and RBAC model. The structure of RBAC model has been improved. The principle of group authority is added into the model and the combination of centralized authority and distributed authority management is adopted, so the model becomes more flexible.