Visible to the public Biblio

Filters: Keyword is millimetre wave imaging  [Clear All Filters]
2021-02-15
Omori, T., Isono, Y., Kondo, K., Akamine, Y., Kidera, S..  2020.  k-Space Decomposition Based Super-resolution Three-dimensional Imaging Method for Millimeter Wave Radar. 2020 IEEE Radar Conference (RadarConf20). :1–6.
Millimeter wave imaging radar is indispensible for collision avoidance of self-driving system, especially in optically blurred visions. The range points migration (RPM) is one of the most promising imaging algorithms, which provides a number of advantages from synthetic aperture radar (SAR), in terms of accuracy, computational complexity, and potential for multifunctional imaging. The inherent problem in the RPM is that it suffers from lower angular resolution in narrower frequency band even if higher frequency e.g. millimeter wave, signal is exploited. To address this problem, the k-space decomposition based RPM has been developed. This paper focuses on the experimental validation of this method using the X-band or millimeter wave radar system, and demonstrated that our method significantly enhances the reconstruction accuracy in three-dimensional images for the two simple spheres and realistic vehicle targets.
2020-08-03
Xin, Le, Li, Yuanji, Shang, Shize, Li, Guangrui, Yang, Yuhao.  2019.  A Template Matching Background Filtering Method for Millimeter Wave Human Security Image. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). :1–6.
In order to solve the interference of burrs, aliasing and other noises in the background area of millimeter wave human security inspection on the objects identification, an adaptive template matching filtering method is proposed. First, the preprocessed original image is segmented by level set algorithm, then the result is used as a template to filter the background of the original image. Finally, the image after background filtered is used as the input of bilateral filtering. The contrast experiments based on the actual millimeter wave image verifies the improvement of this algorithm compared with the traditional filtering method, and proves that this algorithm can filter the background noise of the human security image, retain the image details of the human body area, and is conducive to the object recognition and location in the millimeter wave security image.