Visible to the public Biblio

Filters: Keyword is Boolean algebra  [Clear All Filters]
2022-08-26
Telny, A. V., Monakhov, M. Yu., Aleksandrov, A. V., Matveeva, A. P..  2021.  On the Possibility of Using Cognitive Approaches in Information Security Tasks. 2021 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—6.

This article analyzes the possibilities of using cognitive approaches in forming expert assessments for solving information security problems. The experts use the contextual approach by A.Yu. Khrennikov’s as a basic model for the mathematical description of the quantum decision-making method. In the cognitive view, expert assessments are proposed to be considered as conditional probabilities with regard to the fulfillment of a set of certain conditions. However, the conditions in this approach are contextual, but not events like in Boolean algebra.

2020-10-05
Cruz, Rodrigo Santa, Fernando, Basura, Cherian, Anoop, Gould, Stephen.  2018.  Neural Algebra of Classifiers. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). :729—737.

The world is fundamentally compositional, so it is natural to think of visual recognition as the recognition of basic visually primitives that are composed according to well-defined rules. This strategy allows us to recognize unseen complex concepts from simple visual primitives. However, the current trend in visual recognition follows a data greedy approach where huge amounts of data are required to learn models for any desired visual concept. In this paper, we build on the compositionality principle and develop an "algebra" to compose classifiers for complex visual concepts. To this end, we learn neural network modules to perform boolean algebra operations on simple visual classifiers. Since these modules form a complete functional set, a classifier for any complex visual concept defined as a boolean expression of primitives can be obtained by recursively applying the learned modules, even if we do not have a single training sample. As our experiments show, using such a framework, we can compose classifiers for complex visual concepts outperforming standard baselines on two well-known visual recognition benchmarks. Finally, we present a qualitative analysis of our method and its properties.

2020-08-03
Moradi, Ashkan, Venkategowda, Naveen K. D., Werner, Stefan.  2019.  Coordinated Data-Falsification Attacks in Consensus-based Distributed Kalman Filtering. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). :495–499.
This paper considers consensus-based distributed Kalman filtering subject to data-falsification attack, where Byzantine agents share manipulated data with their neighboring agents. The attack is assumed to be coordinated among the Byzantine agents and follows a linear model. The goal of the Byzantine agents is to maximize the network-wide estimation error while evading false-data detectors at honest agents. To that end, we propose a joint selection of Byzantine agents and covariance matrices of attack sequences to maximize the network-wide estimation error subject to constraints on stealthiness and the number of Byzantine agents. The attack strategy is then obtained by employing block-coordinate descent method via Boolean relaxation and backward stepwise based subset selection method. Numerical results show the efficiency of the proposed attack strategy in comparison with other naive and uncoordinated attacks.