Visible to the public Biblio

Filters: Keyword is hypothesis test based methods  [Clear All Filters]
2020-08-10
Liao, Runfa, Wen, Hong, Pan, Fei, Song, Huanhuan, Xu, Aidong, Jiang, Yixin.  2019.  A Novel Physical Layer Authentication Method with Convolutional Neural Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :231–235.
This paper investigates the physical layer (PHY-layer) authentication that exploits channel state information (CSI) to enhance multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system security by detecting spoofing attacks in wireless networks. A multi-user authentication system is proposed using convolutional neural networks (CNNs) which also can distinguish spoofers effectively. In addition, the mini batch scheme is used to train the neural networks and accelerate the training speed. Meanwhile, L1 regularization is adopted to prevent over-fitting and improve the authentication accuracy. The convolutional-neural-network-based (CNN-based) approach can authenticate legitimate users and detect attackers by CSIs with higher performances comparing to traditional hypothesis test based methods.