Biblio
In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be crippling and highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detection and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each system's logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.
Malware is pervasive and poses serious threats to normal operation of business processes in cloud. Cloud computing environments typically have hundreds of hosts that are connected to each other, often with high risk trust assumptions and/or protection mechanisms that are not difficult to break. Malware often exploits such weaknesses, as its immediate goal is often to spread itself to as many hosts as possible. Detecting this propagation is often difficult to address because the malware may reside in multiple components across the software or hardware stack. In this scenario, it is usually best to contain the malware to the smallest possible number of hosts, and it's also critical for system administration to resolve the issue in a timely manner. Furthermore, resolution often requires that several participants across different organizational teams scramble together to address the intrusion. In this vision paper, we define this problem in detail. We then present our vision of decentralized malware containment and the challenges and issues associated with this vision. The approach of containment involves detection and response using graph analytics coupled with a blockchain framework. We propose the use of a dominance frontier for profile nodes which must be involved in the containment process. Smart contracts are used to obtain consensus amongst the involved parties. The paper presents a basic implementation of this proposal. We have further discussed some open problems related to our vision.
Cloud computing is a revolution in IT technology that provides scalable, virtualized on-demand resources to the end users with greater flexibility, less maintenance and reduced infrastructure cost. These resources are supervised by different management organizations and provided over Internet using known networking protocols, standards and formats. The underlying technologies and legacy protocols contain bugs and vulnerabilities that can open doors for intrusion by the attackers. Attacks as DDoS (Distributed Denial of Service) are ones of the most frequent that inflict serious damage and affect the cloud performance. In a DDoS attack, the attacker usually uses innocent compromised computers (called zombies) by taking advantages of known or unknown bugs and vulnerabilities to send a large number of packets from these already-captured zombies to a server. This may occupy a major portion of network bandwidth of the victim cloud infrastructures or consume much of the servers time. Thus, in this work, we designed a DDoS detection system based on the C.4.5 algorithm to mitigate the DDoS threat. This algorithm, coupled with signature detection techniques, generates a decision tree to perform automatic, effective detection of signatures attacks for DDoS flooding attacks. To validate our system, we selected other machine learning techniques and compared the obtained results.
With the ubiquitous computing of providing services and applications at anywhere and anytime, cloud computing is the best option as it offers flexible and pay-per-use based services to its customers. Nevertheless, security and privacy are the main challenges to its success due to its dynamic and distributed architecture, resulting in generating big data that should be carefully analysed for detecting network's vulnerabilities. In this paper, we propose a Collaborative Anomaly Detection Framework (CADF) for detecting cyber attacks from cloud computing environments. We provide the technical functions and deployment of the framework to illustrate its methodology of implementation and installation. The framework is evaluated on the UNSW-NB15 dataset to check its credibility while deploying it in cloud computing environments. The experimental results showed that this framework can easily handle large-scale systems as its implementation requires only estimating statistical measures from network observations. Moreover, the evaluation performance of the framework outperforms three state-of-the-art techniques in terms of false positive rate and detection rate.
Numerous event-based probing methods exist for cloud computing environments allowing a hypervisor to gain insight into guest activities. Such event-based probing has been shown to be useful for detecting attacks, system hangs through watchdogs, and for inserting exploit detectors before a system can be patched, among others. Here, we illustrate how to use such probing for trustworthy logging and highlight some of the challenges that existing event-based probing mechanisms do not address. Challenges include ensuring a probe inserted at given address is trustworthy despite the lack of attestation available for probes that have been inserted dynamically. We show how probes can be inserted to ensure proper logging of every invocation of a probed instruction. When combined with attested boot of the hypervisor and guest machines, we can ensure the output stream of monitored events is trustworthy. Using these techniques we build a trustworthy log of certain guest-system-call events. The log powers a cloud-tuned Intrusion Detection System (IDS). New event types are identified that must be added to existing probing systems to ensure attempts to circumvent probes within the guest appear in the log. We highlight the overhead penalties paid by guests to increase guarantees of log completeness when faced with attacks on the guest kernel. Promising results (less that 10% for guests) are shown when a guest relaxes the trade-off between log completeness and overhead. Our demonstrative IDS detects common attack scenarios with simple policies built using our guest behavior recording system.
In cloud computing environments, the user authentication scheme is an important security tool because it provides the authentication, authorization, and accounting for cloud users. Therefore, many user authentication schemes for cloud computing have been proposed in recent years. However, we find that most of the previous authentication schemes have some security problems. Besides, it cannot be implemented in cloud computing. To solve the above problems, we propose a new ID-based user authentication scheme for cloud computing in this paper. Compared with the related works, the proposed scheme has higher security levels and lower computation costs. In addition, it can be easily applied to cloud computing environments. Therefore, the proposed scheme is more efficient and practical than the related works.