Visible to the public Biblio

Filters: Keyword is verifiable encryption  [Clear All Filters]
2021-12-21
Hamouid, Khaled, Omar, Mawloud, Adi, Kamel.  2021.  A Privacy-Preserving Authentication Model Based on Anonymous Certificates in IoT. 2021 Wireless Days (WD). :1–6.
This paper proposes an anonymity based mechanism for providing privacy in IoT environment. Proposed scheme allows IoT entities to anonymously interacting and authenticating with each other, or even proving that they have trustworthy relationship without disclosing their identities. Authentication is based on an anonymous certificates mechanism where interacting IoT entities could unlinkably prove possession of a valid certificate without revealing any incorporated identity-related information, thereby preserving their privacy and thwarting tracking and profiling attacks. Through a security analysis, we demonstrate the reliability of our solution.
2020-08-13
Huang, Qinlong, Li, Nan, Zhang, Zhicheng, Yang, Yixian.  2019.  Secure and Privacy-Preserving Warning Message Dissemination in Cloud-Assisted Internet of Vehicles. 2019 IEEE Conference on Communications and Network Security (CNS). :1—8.

Cloud-assisted Internet of Vehicles (IoV)which merges the advantages of both cloud computing and Internet of Things that can provide numerous online services, and bring lots of benefits and conveniences to the connected vehicles. However, the security and privacy issues such as confidentiality, access control and driver privacy may prevent it from being widely utilized for message dissemination. Existing attribute-based message encryption schemes still bring high computational cost to the lightweight vehicles. In this paper, we introduce a secure and privacy-preserving dissemination scheme for warning message in cloud-assisted IoV. Firstly, we adopt attribute-based encryption to protect the disseminated warning message, and present a verifiable encryption and decryption outsourcing construction to reduce the computational overhead on vehicles. Secondly, we present a conditional privacy preservation mechanism which utilizes anonymous identity-based signature technique to ensure anonymous vehicle authentication and message integrity checking, and also allows the trusted authority to trace the real identity of malicious vehicle. We further achieve batch verification to improve the authentication efficiency. The analysis indicate that our scheme gains more security properties and reduces the computational overhead on the vehicles.