Biblio
In recent years, secret key generation based on physical layer security has gradually attracted high attentions. The wireless channel reciprocity and eavesdropping attack are critical problems in secret key generation studies. In this paper, we carry out a simulation and experimental study of channel reciprocity in terms of measuring channel state information (CSI) in both time division duplexing (TDD) and frequency division duplexing (FDD) modes. In simulation study, a close eavesdropping wiretap channel model is introduced to evaluate the security of the CSI by using Pearson correlation coefficient. In experimental study, an indoor wireless CSI measurement system is built with N210 and X310 universal software radio peripheral (USRP) platforms. In TDD mode, theoretical analysis and most of experimental results show that the closer eavesdropping distance, the higher CSI correlation coefficient between eavesdropping channel and legitimate channel. However, in actual environment, when eavesdropping distance is too close (less than 1/4 wavelength), this CSI correlation seriously dropped. In FDD mode, both theoretical analysis and experimental results show that the wireless channel still owns some reciprocity. When frequency interval increases, the FDD channel reciprocity in actual environment is better than that in theoretical analysis.
Applying security to the transmitted image is very important issues, because the transmission channel is open and can be compromised by attackers. To secure this channel from the eavesdropping attack, man in the middle attack, and so on. A new hybrid encryption image mechanism that utilize triangular scrambling, DNA encoding and chaotic map is implemented. The scheme takes a master key with a length of 320 bit, and produces a group of sub-keys with two length (32 and 128 bit) to encrypt the blocks of images, then a new triangular scrambling method is used to increase the security of the image. Many experiments are implemented using several different images. The analysis results for these experiments show that the security obtained on by using the proposed method is very suitable for securing the transmitted images. The current work has been compared with other works and the result of comparison shows that the current work is very strong against attacks.
File encryption is an effective way for an enterprise to prevent its data from being lost. However, the data may still be deliberately or inadvertently leaked out by the insiders or customers. When the sensitive data are leaked, it often results in huge monetary damages and credit loss. In this paper, we propose a novel group file encryption/decryption method, named the Group File Encryption Method using Dynamic System Environment Key (GEMS for short), which provides users with auto crypt, authentication, authorization, and auditing security schemes by utilizing a group key and a system environment key. In the GEMS, the important parameters are hidden and stored in different devices to avoid them from being cracked easily. Besides, it can resist known-key and eavesdropping attacks to achieve a very high security level, which is practically useful in securing an enterprise's and a government's private data.