Biblio
Digital connectivity is fundamental to the health care system to deliver safe and effective care. However, insecure connectivity could be a major threat to patient safety and privacy (e.g., in August 2017, FDA recalled 465,000 pacemakers because of discovering security flaws). Although connecting a patient's pacemaker to the Internet has many advantages for monitoring the patient, this connectivity opens a new door for cyber-attackers to steal the patient data or even control the pacemaker or damage it. Therefore, patients are forced to choose between connectivity and security. This paper presents a framework for secure and private communications between wearable medical devices and patient monitoring systems. The primary objective of this research is twofold, first to identify and analyze the communication vulnerabilities, second, to develop a framework for combating unauthorized access to data through the compromising of computer security. Specifically, hiding targets from cyber-attackers could prevent our system from future cyber-attacks. This is the most effective way to stop cyber-attacks in their first step.
Fully securing networks from remote attacks is recognized by the IT industry as a critical and imposing challenge. Even highly secure systems remain vulnerable to attacks and advanced persistent threats. Air-gapped networks may be secure from remote attack. One-way flows are a novel approach to improving the security of telemetry for critical infrastructure, retaining some of the benefits of interconnectivity whilst maintaining a level of network security analogous to that of unconnected devices. Simple and inexpensive techniques can be used to provide this unidirectional security, removing the risk of remote attack from a range of potential targets and subnets. The application of one-way networks is demonstrated using IEEE compliant PMU data streams as a case study. Scalability is demonstrated using SDN techniques. Finally, these techniques are combined, demonstrating a node which can be secured from remote attack, within defined limitations.