Visible to the public Biblio

Filters: Keyword is outsourced decryption  [Clear All Filters]
2022-04-19
Abdollahi, Sina, Mohajeri, Javad, Salmasizadeh, Mahmoud.  2021.  Highly Efficient and Revocable CP-ABE with Outsourcing Decryption for IoT. 2021 18th International ISC Conference on Information Security and Cryptology (ISCISC). :81–88.
In IoT scenarios, computational and communication costs on the user side are important problems. In most expressive ABE schemes, there is a linear relationship between the access structure size and the number of heavy pairing operations that are used in the decryption process. This property limits the application of ABE. We propose an expressive CP-ABE with the constant number of pairings in the decryption process. The simulation shows that the proposed scheme is highly efficient in encryption and decryption processes. In addition, we use the outsourcing method in decryption to get better performance on the user side. The main burden of decryption computations is done by the cloud without revealing any information about the plaintext. We introduce a new revocation method. In this method, the users' communication channels aren't used during the revocation process. These features significantly reduce the computational and communication costs on the user side that makes the proposed scheme suitable for applications such as IoT. The proposed scheme is selectively CPA-secure in the standard model.
Guo, Rui, Yang, Geng, Shi, Huixian, Zhang, Yinghui, Zheng, Dong.  2021.  O3-R-CP-ABE: An Efficient and Revocable Attribute-Based Encryption Scheme in the Cloud-Assisted IoMT System. IEEE Internet of Things Journal. 8:8949–8963.
With the processes of collecting, analyzing, and transmitting the data in the Internet of Things (IoT), the Internet of Medical Things (IoMT) comprises the medical equipment and applications connected to the healthcare system and offers an entity with real time, remote measurement, and analysis of healthcare data. However, the IoMT ecosystem deals with some great challenges in terms of security, such as privacy leaking, eavesdropping, unauthorized access, delayed detection of life-threatening episodes, and so forth. All these negative effects seriously impede the implementation of the IoMT ecosystem. To overcome these obstacles, this article presents an efficient, outsourced online/offline revocable ciphertext policy attribute-based encryption scheme with the aid of cloud servers and blockchains in the IoMT ecosystem. Our proposal achieves the characteristics of fine-grained access control, fast encryption, outsourced decryption, user revocation, and ciphertext verification. It is noteworthy that based on the chameleon hash function, we construct the private key of the data user with collision resistance, semantically secure, and key-exposure free to achieve revocation. To the best of our knowledge, this is the first protocol for a revocation mechanism by means of the chameleon hash function. Through formal analysis, it is proven to be secure in a selectively replayable chosen-ciphertext attack (RCCA) game. Finally, this scheme is implemented with the Java pairing-based cryptography library, and the simulation results demonstrate that it enables high efficiency and practicality, as well as strong reliability for the IoMT ecosystem.
Conference Name: IEEE Internet of Things Journal
2020-09-04
Qin, Baodong, Zheng, Dong.  2019.  Generic Approach to Outsource the Decryption of Attribute-Based Encryption in Cloud Computing. IEEE Access. 7:42331—42342.

The notion of attribute-based encryption with outsourced decryption (OD-ABE) was proposed by Green, Hohenberger, and Waters. In OD-ABE, the ABE ciphertext is converted to a partially-decrypted ciphertext that has a shorter bit length and a faster decryption time than that of the ABE ciphertext. In particular, the transformation can be performed by a powerful third party with a public transformation key. In this paper, we propose a generic approach for constructing ABE with outsourced decryption from standard ABE, as long as the later satisfies some additional properties. Its security can be reduced to the underlying standard ABE in the selective security model by a black-box way. To avoid the drawback of selective security in practice, we further propose a modified decryption outsourcing mode so that our generic construction can be adapted to satisfying adaptive security. This partially solves the open problem of constructing an OD-ABE scheme, and its adaptive security can be reduced to the underlying ABE scheme in a black-box way. Then, we present some concrete constructions that not only encompass existing ABE outsourcing schemes of Green et al., but also result in new selectively/adaptively-secure OD-ABE schemes with more efficient transformation key generation algorithm. Finally, we use the PBC library to test the efficiency of our schemes and compare the results with some previous ones, which shows that our schemes are more efficient in terms of decryption outsourcing and transformation key generation.

2020-08-17
Huang, Kaiqing.  2019.  Multi-Authority Attribute-Based Encryption for Resource-Constrained Users in Edge Computing. 2019 International Conference on Information Technology and Computer Application (ITCA). :323–326.
Multi-authority attribute-based encryption (MA-ABE) is a promising technique to protect data privacy and achieve fine-grained access control in edge computing for Internet of Things (IoT). However, most of the existing MA-ABE schemes suffer from expensive computational cost in the encryption and decryption phases, which are not practical for resource constrained users in IoT. We propose a large-universe MA-CP-ABE scheme with online/offline encryption and outsourced decryption. In our scheme, most expensive encryption operations have been executed in the user's initialization phase by adding reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Moreover, massive decryption operation are outsourced to the near edge server for reducing the computation overhead of decryption. The proposed scheme is proven statically secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable for resource-constrained users in edge computing for IoT.