Visible to the public Biblio

Filters: Keyword is edge security  [Clear All Filters]
2022-08-04
Boubakri, Marouene, Chiatante, Fausto, Zouari, Belhassen.  2021.  Towards a firmware TPM on RISC-V. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :647—650.
To develop the next generation of Internet of Things, Edge devices and systems which leverage progress in enabling technologies such as 5G, distributed computing and artificial intelligence (AI), several requirements need to be developed and put in place to make the devices smarter. A major requirement for all the above applications is the long-term security and trust computing infrastructure. Trusted Computing requires the introduction inside of the platform of a Trusted Platform Module (TPM). Traditionally, a TPM was a discrete and dedicated module plugged into the platform to give TPM capabilities. Recently, processors manufacturers started integrating trusted computing features into their processors. A significant drawback of this approach is the need for a permanent modification of the processor microarchitecture. In this context, we suggest an analysis and a design of a software-only TPM for RISC-V processors based on seL4 microkernel and OP-TEE.
2020-11-16
Hagan, M., Siddiqui, F., Sezer, S..  2019.  Enhancing Security and Privacy of Next-Generation Edge Computing Technologies. 2019 17th International Conference on Privacy, Security and Trust (PST). :1–5.
The advent of high performance fog and edge computing and high bandwidth connectivity has brought about changes to Internet-of-Things (IoT) service architectures, allowing for greater quantities of high quality information to be extracted from their environments to be processed. However, recently introduced international regulations, along with heightened awareness among consumers, have strengthened requirements to ensure data security, with significant financial and reputational penalties for organisations who fail to protect customers' data. This paper proposes the leveraging of fog and edge computing to facilitate processing of confidential user data, to reduce the quantity and availability of raw confidential data at various levels of the IoT architecture. This ultimately reduces attack surface area, however it also increases efficiency of the architecture by distributing processing amongst nodes and transmitting only processed data. However, such an approach is vulnerable to device level attacks. To approach this issue, a proposed System Security Manager is used to continuously monitor system resources and ensure confidential data is confined only to parts of the device that require it. In event of an attack, critical data can be isolated and the system informed, to prevent data confidentiality breach.
2020-08-24
Noor, Joseph, Ali-Eldin, Ahmed, Garcia, Luis, Rao, Chirag, Dasari, Venkat R., Ganesan, Deepak, Jalaian, Brian, Shenoy, Prashant, Srivastava, Mani.  2019.  The Case for Robust Adaptation: Autonomic Resource Management is a Vulnerability. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :821–826.
Autonomic resource management for distributed edge computing systems provides an effective means of enabling dynamic placement and adaptation in the face of network changes, load dynamics, and failures. However, adaptation in-and-of-itself offers a side channel by which malicious entities can extract valuable information. An attacker can take advantage of autonomic resource management techniques to fool a system into misallocating resources and crippling applications. Using a few scenarios, we outline how attacks can be launched using partial knowledge of the resource management substrate - with as little as a single compromised node. We argue that any system that provides adaptation must consider resource management as an attack surface. As such, we propose ADAPT2, a framework that incorporates concepts taken from Moving-Target Defense and state estimation techniques to ensure correctness and obfuscate resource management, thereby protecting valuable system and application information from leaking.