Biblio
In many industry Internet of Things applications, resources like CPU, memory, and battery power are limited and cannot afford the classic cryptographic security solutions. Silicon physical unclonable function (PUF) is a lightweight security primitive that exploits manufacturing variations during the chip fabrication process for key generation and/or device authentication. However, traditional weak PUFs such as ring oscillator (RO) PUF generate chip-unique key for each device, which restricts their application in security protocols where the same key is required to be shared in resource-constrained devices. In this article, in order to address this issue, we propose a PUF-based key sharing method for the first time. The basic idea is to implement one-to-one input-output mapping with lookup table (LUT)-based interstage crossing structures in each level of inverters of RO PUF. Individual customization on configuration bits of interstage crossing structure and different RO selections with challenges bring high flexibility. Therefore, with the flexible configuration of interstage crossing structures and challenges, crossover RO PUF can generate the same shared key for resource-constrained devices, which enables a new application for lightweight key sharing protocols.
We provide the first solution to an important question, "how a physical-layer RFID authentication method can defend against signal replay attacks". It was believed that if the attacker has a device that can replay the exact same reply signal of a legitimate tag, any physical-layer authentication method will fail. This paper presents Hu-Fu, the first physical layer RFID authentication protocol that is resilient to the major attacks including tag counterfeiting, signal replay, signal compensation, and brute-force feature reply. Hu-Fu is built on two fundamental ideas, namely inductive coupling of two tags and signal randomization. Hu-Fu does not require any hardware or protocol modification on COTS passive tags and can be implemented with COTS devices. We implement a prototype of Hu-Fu and demonstrate that it is accurate and robust to device diversity and environmental changes.
Device-to-device communication is widely used for mobile devices and Internet of Things. Authentication and key agreement are critical to build a secure channel between two devices. However, existing approaches often rely on a pre-built fingerprint database and suffer from low key generation rate. We present GeneWave, a fast device authentication and key agreement protocol for commodity mobile devices. GeneWave first achieves bidirectional initial authentication based on the physical response interval between two devices. To keep the accuracy of interval estimation, we eliminate time uncertainty on commodity devices through fast signal detection and redundancy time cancellation. Then, we derive the initial acoustic channel response for device authentication. We design a novel coding scheme for efficient key agreement while ensuring security. Therefore, two devices can authenticate each other and securely agree on a symmetric key. GeneWave requires neither special hardware nor pre-built fingerprint database, and thus it is easyto-use on commercial mobile devices. We implement GeneWave on mobile devices (i.e., Nexus 5X and Nexus 6P) and evaluate its performance through extensive experiments. Experimental results show that GeneWave efficiently accomplish secure key agreement on commodity smartphones with a key generation rate 10× faster than the state-of-the-art approach.
On battery-free IoT devices such as passive RFID tags, it is extremely difficult, if not impossible, to run cryptographic algorithms. Hence physical-layer identification methods are proposed to validate the authenticity of passive tags. However no existing physical-layer authentication method of RFID tags that can defend against the signal replay attack. This paper presents Hu-Fu, a new direction and the first solution of physical layer authentication that is resilient to the signal replay attack, based on the fact of inductive coupling of two adjacent tags. We present the theoretical model and system workflow. Experiments based on our implementation using commodity devices show that Hu-Fu is effective for physical-layer authentication.
The Internet of Things (IoT) has become ubiquitous in our daily life as billions of devices are connected through the Internet infrastructure. However, the rapid increase of IoT devices brings many non-traditional challenges for system design and implementation. In this paper, we focus on the hardware security vulnerabilities and ultra-low power design requirement of IoT devices. We briefly survey the existing design methods to address these issues. Then we propose an approximate computing based information hiding approach that provides security with low power. We demonstrate that this security primitive can be applied for security applications such as digital watermarking, fingerprinting, device authentication, and lightweight encryption.
The Center for Strategic and International Studies estimates the annual cost from cyber crime to be more than \$400 billion. Most notable is the recent digital identity thefts that compromised millions of accounts. These attacks emphasize the security problems of using clonable static information. One possible solution is the use of a physical device known as a Physically Unclonable Function (PUF). PUFs can be used to create encryption keys, generate random numbers, or authenticate devices. While the concept shows promise, current PUF implementations are inherently problematic: inconsistent behavior, expensive, susceptible to modeling attacks, and permanent. Therefore, we propose a new solution by which an unclonable, dynamic digital identity is created between two communication endpoints such as mobile devices. This Physically Unclonable Digital ID (PUDID) is created by injecting a data scrambling PUF device at the data origin point that corresponds to a unique and matching descrambler/hardware authentication at the receiving end. This device is designed using macroscopic, intentional anomalies, making them inexpensive to produce. PUDID is resistant to cryptanalysis due to the separation of the challenge response pair and a series of hash functions. PUDID is also unique in that by combining the PUF device identity with a dynamic human identity, we can create true two-factor authentication. We also propose an alternative solution that eliminates the need for a PUF mechanism altogether by combining tamper resistant capabilities with a series of hash functions. This tamper resistant device, referred to as a Quasi-PUDID (Q-PUDID), modifies input data, using a black-box mechanism, in an unpredictable way. By mimicking PUF attributes, Q-PUDID is able to avoid traditional PUF challenges thereby providing high-performing physical identity assurance with or without a low performing PUF mechanism. Three different application scenarios with mobile devices for PUDID and Q-PUDI- have been analyzed to show their unique advantages over traditional PUFs and outline the potential for placement in a host of applications.
In the future Internet of Things, it is envisioned that things are collaborating to serve people. Unfortunately, this vision could not be realised without relations between things and people. To solve the problem this paper proposes a user centric identity management system that incorporates user identity, device identity and the relations between them. The proposed IDM system is user centric and allows device authentication and authorization based on the user identity. A typical compelling use case of the proposed solution is also given.