Biblio
Filters: Keyword is Proposed Feature Extraction [Clear All Filters]
Optimized Activation Function on Deep Belief Network for Attack Detection in IoT. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :702–708.
.
2019. This paper mainly focuses on presenting a novel attack detection system to thread out the risk issues in IoT. The presented attack detection system links the interconnection of DevOps as it creates the correlation between development and IT operations. Further, the presented attack detection model ensures the operational security of different applications. In view of this, the implemented system incorporates two main stages named Proposed Feature Extraction process and Classification. The data from every application is processed with the initial stage of feature extraction, which concatenates the statistical and higher-order statistical features. After that, these extracted features are supplied to classification process, where determines the presence of attacks. For this classification purpose, this paper aims to deploy the optimized Deep Belief Network (DBN), where the activation function is tuned optimally. Furthermore, the optimal tuning is done by a renowned meta-heuristic algorithm called Lion Algorithm (LA). Finally, the performance of proposed work is compared and proved over other conventional methods.