Visible to the public Biblio

Filters: Keyword is N-gram  [Clear All Filters]
2021-11-29
Xu, Zhiwu, Hu, Xiongya, Tao, Yida, Qin, Shengchao.  2020.  Analyzing Cryptographic API Usages for Android Applications Using HMM and N-Gram. 2020 International Symposium on Theoretical Aspects of Software Engineering (TASE). :153–160.
A recent research shows that 88 % of Android applications that use cryptographic APIs make at least one mistake. For this reason, several tools have been proposed to detect crypto API misuses, such as CryptoLint, CMA, and CogniCryptSAsT. However, these tools depend heavily on manually designed rules, which require much cryptographic knowledge and could be error-prone. In this paper, we propose an approach based on probabilistic models, namely, hidden Markov model and n-gram model, to analyzing crypto API usages in Android applications. The difficulty lies in that crypto APIs are sensitive to not only API orders, but also their arguments. To address this, we have created a dataset consisting of crypto API sequences with arguments, wherein symbolic execution is performed. Finally, we have also conducted some experiments on our models, which shows that ( i) our models are effective in capturing the usages, detecting and locating the misuses; (ii) our models perform better than the ones without symbolic execution, especially in misuse detection; and (iii) compared with CogniCryptSAsT, our models can detect several new misuses.
2021-02-23
Park, S. H., Park, H. J., Choi, Y..  2020.  RNN-based Prediction for Network Intrusion Detection. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :572—574.
We investigate a prediction model using RNN for network intrusion detection in industrial IoT environments. For intrusion detection, we use anomaly detection methods that estimate the next packet, measure and score the distance measurement in real packets to distinguish whether it is a normal packet or an abnormal packet. When the packet was learned in the LSTM model, two-gram and sliding window of N-gram showed the best performance in terms of errors and the performance of the LSTM model was the highest compared with other data mining regression techniques. Finally, cosine similarity was used as a scoring function, and anomaly detection was performed by setting a boundary for cosine similarity that consider as normal packet.
2020-12-14
Habibi, G., Surantha, N..  2020.  XSS Attack Detection With Machine Learning and n-Gram Methods. 2020 International Conference on Information Management and Technology (ICIMTech). :516–520.

Cross-Site Scripting (XSS) is an attack most often carried out by attackers to attack a website by inserting malicious scripts into a website. This attack will take the user to a webpage that has been specifically designed to retrieve user sessions and cookies. Nearly 68% of websites are vulnerable to XSS attacks. In this study, the authors conducted a study by evaluating several machine learning methods, namely Support Vector Machine (SVM), K-Nearest Neighbour (KNN), and Naïve Bayes (NB). The machine learning algorithm is then equipped with the n-gram method to each script feature to improve the detection performance of XSS attacks. The simulation results show that the SVM and n-gram method achieves the highest accuracy with 98%.

2020-08-28
BOUGHACI, Dalila, BENMESBAH, Mounir, ZEBIRI, Aniss.  2019.  An improved N-grams based Model for Authorship Attribution. 2019 International Conference on Computer and Information Sciences (ICCIS). :1—6.

Authorship attribution is the problem of studying an anonymous text and finding the corresponding author in a set of candidate authors. In this paper, we propose a method based on N-grams model for the problem of authorship attribution. Several measures are used to assign an anonymous text to an author. The different variants of the proposed method are implemented and validated on PAN benchmarks. The numerical results are encouraging and demonstrate the benefit of the proposed idea.