Visible to the public Biblio

Filters: Keyword is semantic segmentation  [Clear All Filters]
2023-08-03
Feng, Jiayi.  2022.  Generative Adversarial Networks for Remote Sensing. 2022 2nd International Conference on Big Data, Artificial Intelligence and Risk Management (ICBAR). :108–112.
Generative adversarial networks (GANs) have been increasingly popular among deep learning methods. With many GANs-based models developed since its emergence, among which are conditional generative adversarial networks, progressive growing of generative adversarial networks, Wasserstein generative adversarial networks and so on. These frameworks are currently widely applied in areas such as remote sensing cybersecurity, medical, and architecture. Especially, they have solved problems of cloud removal, semantic segmentation, image-to-image translation and data argumentation in remote sensing. For example, WGANs and ProGANs can be applied in data argumentation, and cGANs can be applied in semantic argumentation and image-to-image translation. This article provides an overview of structures of multiple GANs-based models and what areas they can be applied in remote sensing.
2023-04-28
Shan, Ziqi, Wang, Yuying, Wei, Shunzhong, Li, Xiangmin, Pang, Haowen, Zhou, Xinmei.  2022.  Docscanner: document location and enhancement based on image segmentation. 2022 18th International Conference on Computational Intelligence and Security (CIS). :98–101.
Document scanning aims to transfer the captured photographs documents into scanned document files. However, current methods based on traditional or key point detection have the problem of low detection accuracy. In this paper, we were the first to propose a document processing system based on semantic segmentation. Our system uses OCRNet to segment documents. Then, perspective transformation and other post-processing algorithms are used to obtain well-scanned documents based on the segmentation result. Meanwhile, we optimized OCRNet's loss function and reached 97.25 MIoU on the test dataset.
2022-05-19
Zhang, Xiangyu, Yang, Jianfeng, Li, Xiumei, Liu, Minghao, Kang, Ruichun, Wang, Runmin.  2021.  Deeply Multi-channel guided Fusion Mechanism for Natural Scene Text Detection. 2021 7th International Conference on Big Data and Information Analytics (BigDIA). :149–156.
Scene text detection methods have developed greatly in the past few years. However, due to the limitation of the diversity of the text background of natural scene, the previous methods often failed when detecting more complicated text instances (e.g., super-long text and arbitrarily shaped text). In this paper, a text detection method based on multi -channel bounding box fusion is designed to address the problem. Firstly, the convolutional neural network is used as the basic network for feature extraction, including shallow text feature map and deep semantic text feature map. Secondly, the whole convolutional network is used for upsampling of feature map and fusion of feature map at each layer, so as to obtain pixel-level text and non-text classification results. Then, two independent text detection boxes channels are designed: the boundary box regression channel and get the bounding box directly on the score map channel. Finally, the result is obtained by combining multi-channel boundary box fusion mechanism with the detection box of the two channels. Experiments on ICDAR2013 and ICDAR2015 demonstrate that the proposed method achieves competitive results in scene text detection.
2022-03-09
Kline, Timothy L..  2021.  Improving Domain Generalization in Segmentation Models with Neural Style Transfer. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). :1324—1328.
Generalizing automated medical image segmentation methods to new image domains is inherently difficult. We have previously developed a number of automated segmentation methods that perform at the level of human readers on images acquired under similar conditions to the original training data. We are interested in exploring techniques that will improve model generalization to new imaging domains. In this study we explore a method to limit the inherent bias of these models to intensity and textural information. Using a dataset of 100 T2-weighted MR images with fat-saturation, and 100 T2-weighted MR images without fat-saturation, we explore the use of neural style transfer to induce shape preference and improve model performance on the task of segmenting the kidneys in patients affected by polycystic kidney disease. We find that using neural style transfer images improves the average dice value by 0.2. In addition, visualizing individual network kernel responses highlights a drastic difference in the optimized networks. Biasing models to invoke shape preference is a promising approach to create methods that are more closely aligned with human perception.
Jia, Ning, Gong, Xiaoyi, Zhang, Qiao.  2021.  Improvement of Style Transfer Algorithm based on Neural Network. 2021 International Conference on Computer Engineering and Application (ICCEA). :1—6.
In recent years, the application of style transfer has become more and more widespread. Traditional deep learning-based style transfer networks often have problems such as image distortion, loss of detailed information, partial content disappearance, and transfer errors. The style transfer network based on deep learning that we propose in this article is aimed at dealing with these problems. Our method uses image edge information fusion and semantic segmentation technology to constrain the image structure before and after the migration, so that the converted image maintains structural consistency and integrity. We have verified that this method can successfully suppress image conversion distortion in most scenarios, and can generate good results.
2020-12-07
Chang, R., Chang, C., Way, D., Shih, Z..  2018.  An improved style transfer approach for videos. 2018 International Workshop on Advanced Image Technology (IWAIT). :1–2.

In this paper, we present an improved approach to transfer style for videos based on semantic segmentation. We segment foreground objects and background, and then apply different styles respectively. A fully convolutional neural network is used to perform semantic segmentation. We increase the reliability of the segmentation, and use the information of segmentation and the relationship between foreground objects and background to improve segmentation iteratively. We also use segmentation to improve optical flow, and apply different motion estimation methods between foreground objects and background. This improves the motion boundaries of optical flow, and solves the problems of incorrect and discontinuous segmentation caused by occlusion and shape deformation.

2020-08-28
Jilnaraj, A. R., Geetharanjin, P. R., Lethakumary, B..  2019.  A Novel Technique for Biometric Data Protection in Remote Authentication System. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). 1:681—686.
Remote authentication via biometric features has received much attention recently, hence the security of biometric data is of great importance. Here a crypto-steganography method applied for the protection of biometric data is implemented. It include semantic segmentation, chaotic encryption, data hiding and fingerprint recognition to avoid the risk of spoofing attacks. Semantically segmented image of the person to be authenticated is used as the cover image and chaotic encrypted fingerprint image is used as secret image here. Chaotic encrypted fingerprint image is embedded into the cover image using Integer Wavelet Transform (IWT). Extracted fingerprint image is then compared with the fingerprints in database to authenticate the person. Qualified Significant Wavelet Trees (QSWT`s) of the cover image act as the target coefficients to insert the secret image. IWT provide both invisibility and resistance against the lossy transmissions. Experimental result shows that the semantic segmentation reduces the bandwidth efficiently. In addition, chaotic encryption and IWT based data hiding increases the security of the transmitted biometric data.