Visible to the public Biblio

Filters: Keyword is addresses identification algorithms  [Clear All Filters]
2020-09-04
Liang, Jiaqi, Li, Linjing, Chen, Weiyun, Zeng, Daniel.  2019.  Targeted Addresses Identification for Bitcoin with Network Representation Learning. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :158—160.

The anonymity and decentralization of Bitcoin make it widely accepted in illegal transactions, such as money laundering, drug and weapon trafficking, gambling, to name a few, which has already caused significant security risk all around the world. The obvious de-anonymity approach that matches transaction addresses and users is not possible in practice due to limited annotated data set. In this paper, we divide addresses into four types, exchange, gambling, service, and general, and propose targeted addresses identification algorithms with high fault tolerance which may be employed in a wide range of applications. We use network representation learning to extract features and train imbalanced multi-classifiers. Experimental results validated the effectiveness of the proposed method.