Visible to the public Biblio

Filters: Keyword is Internet of things environment  [Clear All Filters]
2020-07-30
Su, Wei-Tsung, Chen, Wei-Cheng, Chen, Chao-Chun.  2019.  An Extensible and Transparent Thing-to-Thing Security Enhancement for MQTT Protocol in IoT Environment. 2019 Global IoT Summit (GIoTS). :1—4.

Message Queue Telemetry Transport (MQTT) is widely accepted as a data exchange protocol in Internet of Things (IoT) environment. For security, MQTT supports Transport Layer Security (MQTT-TLS). However, MQTT-TLS provides thing-to-broker channel encryption only because data can still be exposed after MQTT broker. In addition, ACL becomes impractical due to the increasing number of rules for authorizing massive IoT devices. For solving these problems, we propose MQTT Thing-to-Thing Security (MQTT-TTS) which provides thing-to-thing security which prevents data leak. MQTT-TTS also provides the extensibility to include demanded security mechanisms for various security requirements. Moreover, the transparency of MQTT-TTS lets IoT application developers implementing secure data exchange with less programming efforts. Our MQTT-TTS implementation is available on https://github.com/beebit-sec/beebit-mqttc-sdk for evaluation.

2020-06-01
Surnin, Oleg, Hussain, Fatima, Hussain, Rasheed, Ostrovskaya, Svetlana, Polovinkin, Andrey, Lee, JooYoung, Fernando, Xavier.  2019.  Probabilistic Estimation of Honeypot Detection in Internet of Things Environment. 2019 International Conference on Computing, Networking and Communications (ICNC). :191–196.
With the emergence of the Internet of Things (IoT) and the increasing number of resource-constrained interconnected smart devices, there is a noticeable increase in the number of cyber security crimes. In the face of the possible attacks on IoT networks such as network intrusion, denial of service, spoofing and so on, there is a need to develop efficient methods to locate vulnerabilities and mitigate attacks in IoT networks. Without loss of generality, we consider only intrusion-related threats to IoT. A honeypot is a system used to understand the potential dynamic threats and act as a proactive measure to detect any intrusion into the network. It is used as a trap for intruders to control unauthorized access to the network by analyzing malicious traffic. However, a sophisticated attacker can detect the presence of a honeypot and abort the intrusion mission. Therefore it is essential for honeypots to be undetectable. In this paper, we study and analyze possible techniques for SSH and telnet honeypot detection. Moreover, we propose a new methodology for probabilistic estimation of honeypot detection and an automated software implemented this methodology.
2020-05-26
Sahay, Rashmi, Geethakumari, G., Mitra, Barsha, Thejas, V..  2018.  Exponential Smoothing based Approach for Detection of Blackhole Attacks in IoT. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Low power and lossy network (LLN) comprising of constrained devices like sensors and RFIDs, is a major component in the Internet of Things (IoT) environment as these devices provide global connectivity to physical devices or “Things”. LLNs are tied to the Internet or any High Performance Computing environment via an adaptation layer called 6LoWPAN (IPv6 over Low power Personal Area Network). The routing protocol used by 6LoWPAN is RPL (IPv6 Routing Protocol over LLN). Like many other routing protocols, RPL is susceptible to blackhole attacks which cause topological isolation for a subset of nodes in the LLN. A malicious node instigating the blackhole attack drops received packets from nodes in its subtree which it is supposed to forward. Thus, the malicious node successfully isolates nodes in its subtree from the rest of the network. In this paper, we propose an algorithm based on the concept of exponential smoothing to detect the topological isolation of nodes due to blackhole attack. Exponential smoothing is a technique for smoothing time series data using the exponential window function and is used for short, medium and long term forecasting. In our proposed algorithm, exponential smoothing is used to estimate the next arrival time of packets at the sink node from every other node in the LLN. Using this estimation, the algorithm is designed to identify the malicious nodes instigating blackhole attack in real time.
2015-05-05
Jan, M.A., Nanda, P., Xiangjian He, Zhiyuan Tan, Ren Ping Liu.  2014.  A Robust Authentication Scheme for Observing Resources in the Internet of Things Environment. Trust, Security and Privacy in Computing and Communications (TrustCom), 2014 IEEE 13th International Conference on. :205-211.

The Internet of Things is a vision that broadens the scope of the internet by incorporating physical objects to identify themselves to the participating entities. This innovative concept enables a physical device to represent itself in the digital world. There are a lot of speculations and future forecasts about the Internet of Things devices. However, most of them are vendor specific and lack a unified standard, which renders their seamless integration and interoperable operations. Another major concern is the lack of security features in these devices and their corresponding products. Most of them are resource-starved and unable to support computationally complex and resource consuming secure algorithms. In this paper, we have proposed a lightweight mutual authentication scheme which validates the identities of the participating devices before engaging them in communication for the resource observation. Our scheme incurs less connection overhead and provides a robust defence solution to combat various types of attacks.