Visible to the public Biblio

Filters: Keyword is image-based  [Clear All Filters]
2022-02-07
Abdelmonem, Salma, Seddik, Shahd, El-Sayed, Rania, Kaseb, Ahmed S..  2021.  Enhancing Image-Based Malware Classification Using Semi-Supervised Learning. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :125–128.
Malicious software (malware) creators are constantly mutating malware files in order to avoid detection, resulting in hundreds of millions of new malware every year. Therefore, most malware files are unlabeled due to the time and cost needed to label them manually. This makes it very challenging to perform malware detection, i.e., deciding whether a file is malware or not, and malware classification, i.e., determining the family of the malware. Most solutions use supervised learning (e.g., ResNet and VGG) whose accuracy degrades significantly with the lack of abundance of labeled data. To solve this problem, this paper proposes a semi-supervised learning model for image-based malware classification. In this model, malware files are represented as grayscale images, and semi-supervised learning is carefully selected to handle the plethora of unlabeled data. Our proposed model is an enhanced version of the ∏-model, which makes it more accurate and consistent. Experiments show that our proposed model outperforms the original ∏-model by 4% in accuracy and three other supervised models by 6% in accuracy especially when the ratio of labeled samples is as low as 20%.
2020-09-11
Zhang, Yang, Gao, Haichang, Pei, Ge, Luo, Sainan, Chang, Guoqin, Cheng, Nuo.  2019.  A Survey of Research on CAPTCHA Designing and Breaking Techniques. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :75—84.
The Internet plays an increasingly important role in people's lives, but it also brings security problems. CAPTCHA, which stands for Completely Automated Public Turing Test to Tell Computers and Humans Apart, has been widely used as a security mechanism. This paper outlines the scientific and technological progress in both the design and attack of CAPTCHAs related to these three CAPTCHA categories. It first presents a comprehensive survey of recent developments for each CAPTCHA type in terms of usability, robustness and their weaknesses and strengths. Second, it summarizes the attack methods for each category. In addition, the differences between the three CAPTCHA categories and the attack methods will also be discussed. Lastly, this paper provides suggestions for future research and proposes some problems worthy of further study.